

Disclaimer

This presentation, together with the material set forth herein, does not constitute an offer of securities for sale nor the solicitation of an offer to purchase securities in any jurisdiction. Distribution of such presentation in certain jurisdiction may constitute a breach of applicable laws and regulation. This document is solely for your information on a confidential basis and may not be reproduced, redistributed or sent, in whole or in part, to any other person, including by email or by any other means of electronic communication. In particular, neither this document nor any copy of it may be taken, transmitted or distributed, directly or indirectly, in the United States, Canada, Japan or Australia. The distribution of this document in other jurisdictions may be restricted by law and persons into whose possession this document comes should make themselves aware of the existence of, and observe, any such restrictions. Neither the Company, nor any of its advisors and representatives may accept any responsibility for any loss or damage incurred by the use of this document or the information set forth herein. Neither the Company, nor any of its advisors and representatives takes any undertaking nor guarantees, whether explicitly or tacitly, the accuracy or the completeness of the information set forth herein. Neither this document, nor any part of it, shall form the basis of, or be relied upon in connection with, any contract or commitment whatsoever. In particular, in France, any decision to purchase such securities shall rely solely on the documents that have been reviewed by the Autorité des Marchés Financiers (the "AMF") and/or published by the Company. This document does not constitute an offer to purchase any financial instruments in the United States. Securities mentioned in this document have not been and will not be registered under the Securities Act of 1933, as amended (the "Securities Act") and may not be offered or sold in the United States absent registration or an exemption from the registration requirements of the Securities Act. The Company does not intend to register any offering in all or in part or to make a public offer of securities in the United States. This document contains information on the objectives of the Company along with some projections and forward-looking statements. The reader's attention is drawn to the fact that these objectives may not be fulfilled, and the forecasts or information provided may prove erroneous, and the Company is not required to update such information. Past performance is no guide to future performance and persons needing advice should consult an independent financial adviser.

Experienced Management Team

ALAIN MOUSSY

Co-founder and CEO

Former strategic consultant at Booz, Allen
& Hamilton and former Head of Corporate

& Hamilton and former Head of Corporate

Development at Carrefour.

President of AFIRMM, association of
mastocytosis patients.

CHRISTIAN FASSOTTE
Global Chief Medical Officer

Medical Doctor. 30 years of experience, including executive position at Sanofi for Medical, Regulatory Affairs and R&D.

OLIVIER HERMINE, MD, PHD
Chairman of Scientific Committee
Member of the French Académie des
Sciences and author of 700 international
publications

LAURENT GUY
Chief Financial Officer

Former positions in the banking industry (Société Générale and Paribas) and strategy consulting (Accenture).

Investment Highlights

Portfolio based on Diversified and Multiple Late-Stage Programs

Breakthrough mechanism of action

- Lead compound: Masitinib, kinase inhibitor selectively targeting mast cells and macrophages/microglia
- New opportunity in viral diseases as masitinib is broad coronavirus 3CL non-peptitomitetic inhibitor that blocks replication of SARS-CoV-2 (*Science*. 2021).
- New compound: AB8939, next generation, synthetic microtubule destabilizer not binding to PgP

Late stage pipeline with Eight positive
Phase 2B/3 read outs

CNS Diseases

- Amyotrophic lateral sclerosis (ALS)
- Alzheimer's Disease (AD)
- Multiple sclerosis (primary progressive and secondary progressive)

Inflammatory Diseases

- Mastocytosis (ISM)
- Severe asthma uncontrolled by oral corticosteroids
- Severe asthma uncontrolled by inhaled corticosteroids

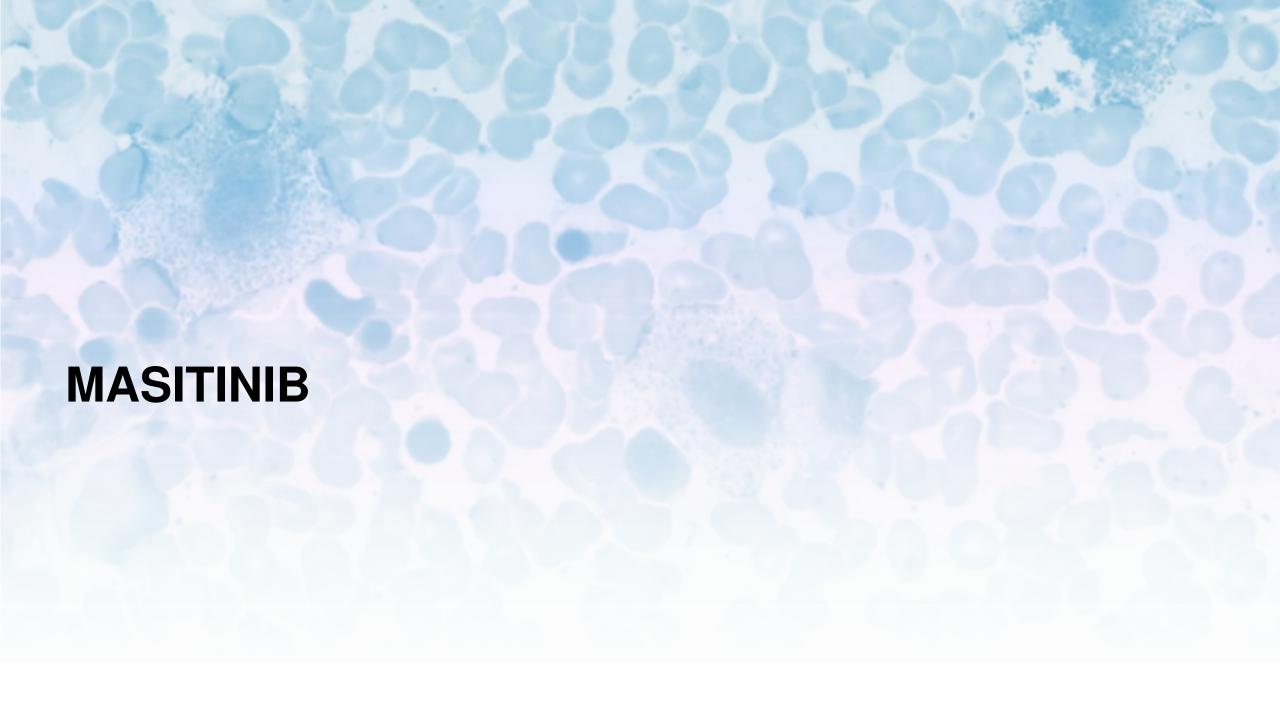
Oncology

- Locally advanced pancreatic cancer (LAPC)
- Metastatic prostate cancer (mCRPC)

Strong IP position

• IP 100% owned by AB Science

Pipeline


Diversified portfolio with eight positive phase 2B/3 trials

Compound	Therapeutic area	Indication	Preclinical	Phase 1	Phase 2	Phase 2B/3	Confirmatory Phase 3
		Amyotrophic Lateral Sclerosis*	First phase 2B/3 o	completed; 394 patier	nts enrolled. On-going	confirmatory study	*
	Neurology Diseases	Alzheimer's Disease*	First phase 2B/3 o	completed; 720 patier	nts enrolled		,
		Progressive forms of Multiple Sclerosis*	First phase 2B/3 c	completed; 656 patier	nts enrolled		,
		Indolent Systemic Mastocytosis*	First phase 3 com	pleted; 135 patients e	enrolled. On-going con	firmatory study	> *
	Inflammatory	MCAS (mast cell activation syndrome)	Authorized phase	2	*		
Masitinib	Diseases	Severe Asthma Uncontrolled with OCS*	First phase 3 com	pleted; 419 patients e	enrolled		
		Severe Asthma Uncontrolled with ICS*	First phase 3 com	pleted; 347 patients e	enrolled		,
	Oncology	Pancreatic Cancer*	First phase 3 com	pleted; 383 patients e	enrolled		,
	Officology	Metastatic Prostate Cancer *	First phase 3 com	pleted; 580 patients e	enrolled		
	Viral Diseases	Moderate and severe COVID-19 (anti-inflammatory)	On-going phase 2		*		
VII di Diseases	Viidi Discuses	Mild and moderate COVID-19 (anti-viral)	Authorized phase	2	*		
AB8939	Oncology	Acute Myeloid Leukemia	Authorized phase	1/2	*		

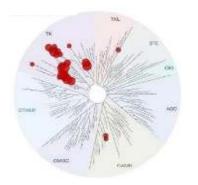
Financial Information

- Euronext Paris: AB.PA
- Ordinary Shares Outstanding: 46.8M
- Cash position (€): 17.6M€ (as of June 30, 2020)
- Research Tax Credit 2020 to be received in 2021: 3.3M€
- Debt : State-guaranteed loan of 6M€ received in April 2021
- Off-balance sheet commitments:
 - 15M€ Loan agreement signed with the European Investment Bank
 - 25M€ firm financing option from historical shareholders before June 30, 2022, at the initiative of AB Science
 - 50M€ additional commitment (25M€ per year from July 2022), subject to an absence of event clause significantly unfavorable
- Equity Line in place (up to 4M shares)

Masitinib Profile and Mechanism of Action

Orally-administered kinase inhibitor selectively targeting mast cells and macrophages

Masitinib targets mast cells

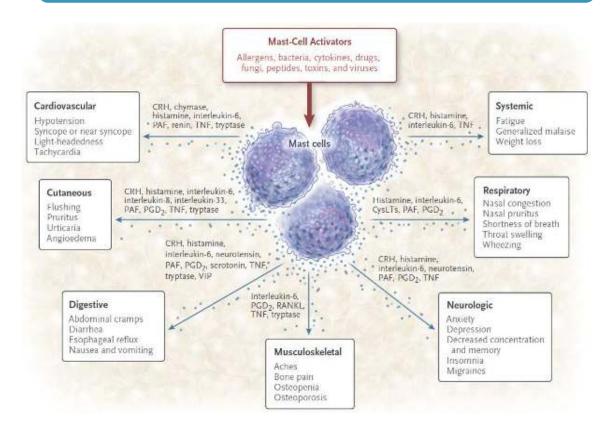

- Masitinib is a potent and selective inhibitor of c-Kit, Lyn, and Fyn kinases. These kinases play critical roles in the activation of mast cells
- Mast cells are a target in neurodegenerative diseases, inflammatory diseases and in oncology

Masitinib targets macrophages/microglia

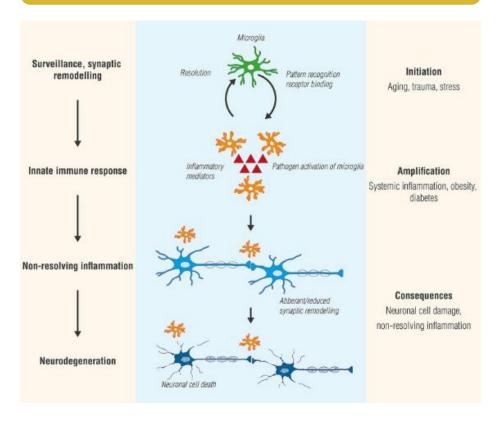
- Masitinib is a potent and selective inhibitor of MCSFR-1
- Macrophages are a target in oncology. Microglia are a target in amyotrophic lateral sclerosis and Alzheimer's disease.

Masitinib is orally administered

Kinase inhibition profile of masitinib									
Cellular Target	Molecular Target	IC ₅₀ [nM]	Kd [μM]						
	KIT wild-type (WT)	20	0.008						
Mast cells	FYN	240	0.14						
	LYN	225	0.061						
Macrophages / Microglia	MCSFR-1	90	0.0076						



Critical Role of Mast Cells & Macrophages / Microglia


Mast cells and microglia contribute to neuro-inflammation, which is strongly influenced by their potential for mutual interaction and exacerbation of pathology

Activation of mast cells leads to degranulation and secretion of numerous mediators that are thought to contribute to the multiple symptoms observed in patients

Theoharides T., Valent P., Akin C., NEJM 2015. Mast Cells, Mastocytosis, and Related Disorders

Non-resolving neuroinflammation can lead to neuronal cell death

Stephen D. Skaper, Laura Facci, Morena Zusso, and Pietro Giusti. Front Cell Neurosci. 2018; 12: 72. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron

Rationale

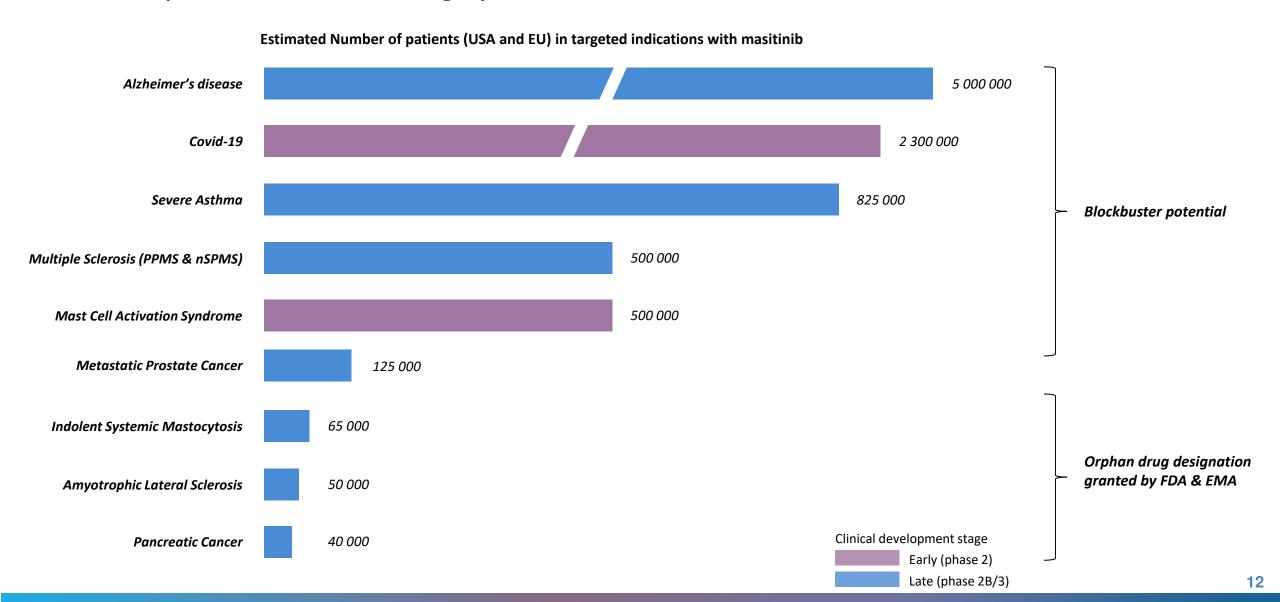
The clinical development is primarily based on the targeting of Mast Cells & Macrophages/Microglia

Compound	Therapeutic area	Indication	Cellular (Molectular) Target	
		Amyotrophic Lateral Sclerosis		
	Neurology Diseases	Progressive forms of Multiple Sclerosis	Mast Cells (c-Kit, Lyn, Fyn kinases)Microglia (MCSFR-1 kinase)	
		Alzheimer's Disease		
		Indolent Systemic Mastocytosis		
	Inflammatory Diseases	Mast Cell Activation Syndrome	• Mast Cells (c-Kit, Lyn, Fyn kinases)	
Masitinib		Severe Asthma Uncontrolled with OCS		
		Severe Asthma Uncontrolled with ICS		
	Oncology	Pancreatic Cancer	 Mast Cells (c-Kit, Lyn, Fyn kinases) 	
		Metastatic Prostate Cancer	 Macrophages (MCSFR-1 kinase) 	
		Moderate and severe COVID-19 (anti-inflammatory)	Mast Cells (c-Kit, Lyn, Fyn kinases)Macrophages (MCSFR-1 kinase)	
	Viral Diseases	Mild and moderate COVID-19 (anti-viral)	• (3CL protease)	
AB8939	Oncology	Acute Myeloid Leukemia	• (microtubules)	

Masitinib Safety Database Across Indications

Well established safety profile with long-term exposure

	Safety population	Patients exposed for at least					
	All	≥ 6 months	≥ 12 months	≥ 2 years	≥5 years		
Healthy Volunteers subjects	114	0	0	0	0		
Non Oncology subjects	3,338	2,124	1,519	665	50		
Oncology subjects	3,333	1,191	574	221	51		
Total	6,785	3,315	2,093	886	101		


Safety profile

- AEs are primarily mild to moderate
- Most common AEs are periorbital edema, anemia, diarrhea, nausea, and vomiting
- AEs primarily occurs in the first 3 months and are usually manageable with dose titration
- Masitinib is suitable for long-term administration, because it is not immunosuppressive

Market Potential

Blockbuster potential but also addressing orphan diseases

Amyotrophic Lateral Sclerosis (ALS) **Masitinib in Neurology Diseases** Alzheimer's Disease (AD) Multiple Sclerosis (PPMS and nSPMS)

Study AB10015 evaluated two masitinib doses in patients with ALS.

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, phase 2/3 study

Groups

- Masitinib 4.5mg/kg/day + riluzole
- Masitinib 3 mg/kg/day + riluzole
- Placebo + riluzole

Enrolment: 394 patients

Duration: 48 weeks

Primary endpoint: Change from baseline in

ALSFRS-R score

Secondary endpoint

 PFS, Progression Free Survival: ALSFRS-R deterioration ≥ 9 points, or death

Main inclusion criteria

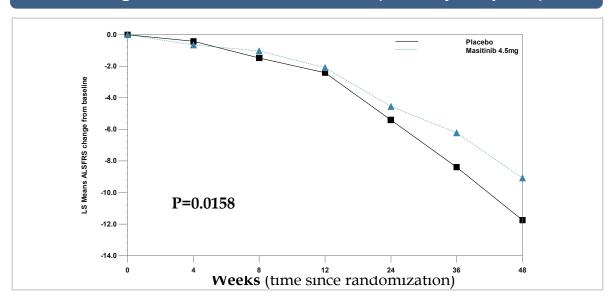
- Patients with probable, or definite ALS, sporadic or familial ALS
- 2) Patients on stable dose of riluzole for at least 30 days prior to screening
- 3) Patients with disease duration ≤ 36 months and FVC ≥ 60%

Pre-specified Analysis Plan

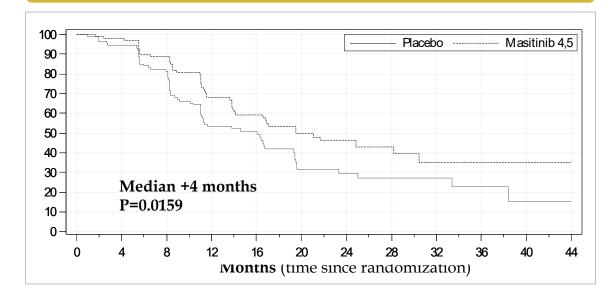
Two distinct populations were differentiated:

- 'Normal Progressors': rate <1.1 points/month
- 'Faster Progressors': rate ≥ 1.1 points/month
- Rate of ALSFRS-R progression from first symptom to randomization (points/month):

Efficacy analyses were conducted in a stepwise manner


 Fixed sequence method, to control the global family-wise error rate at the 0.05 level for the primary analysis for each dose.

STEP	POPULATION					
1	Normal Masitinib 4.5 mg					
2	Normal Masitinib 3.0 mg					
3	Normal + Faster Masitinib 4.5 mg					
4	Normal + Faster Masitinib 3.0 mg					



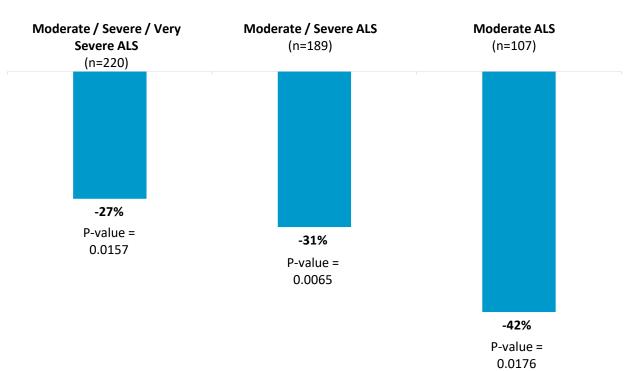
Phase 2B/3 demonstrated significant delay in disease progression in "Normal" progressors with masitinib 4.5 mg/kg/day

27% slowing of functional deterioration (Primary Endpoint)

25% delay in disease progression (PFS)

Effectiveness supported by validated mechanism of action

- Schwann Cells Orchestrate Peripheral Nerve Inflammation Through the Expression of CSF1, IL-34, and SCF in Amyotrophic Lateral Sclerosis. Glia 2020
- Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight. 2018.
- Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS. JCI Insight, 2017.
- Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation, 2016.



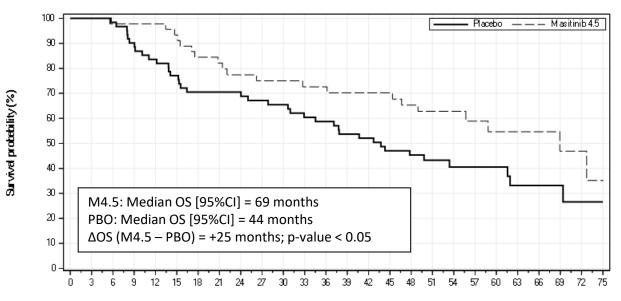
Clinical benefit further enhanced when treatment initiated early

% reduction in change in ALSFRS (primary endpoint – Normal progressors)

Masitinib 4.5mg/kg/day

Moderate / Severe / Very Severe ALS : Primary Analysis (Any baseline ALSFRS-R score; ΔFS<1.1)

Moderate / Severe ALS : (≥ 1 each baseline ALSFRS-R item; ; Δ FS<1.1)


Moderate ALS : (≥2 each baseline ALSFRS-R item; ; ΔFS<1.1)

Long-term survival follow-up showed a significant survival benefit of +25 months when treatment was initiated early

+ 25 months in median Overall Survival in patients with moderate ALS

Kaplan–Meier survival curves from masitinib study AB10015 long-term survival analysis progressors - Masitinib 4.5mg/kg/day

Moderate ALS (≥2 each baseline ALSFRS-R item; ; ΔFS<1.1)

On-going confirmatory phase 3 study, with design validated by health authorities through Scientific Advise

Confirmatory phase 3 design

Design: Double blind, placebo controlled, randomized 1:1:1:1, comparing masitinib titration up to 6.0 mg/kg/day with placebo and masitinib titration up to 4.5 mg/kg/day with placebo

Main inclusion criteria:

- Disease duration \leq 24 months,
- Moderate ALS (Baseline functional score ≥ 2 on each ALSFRS-R items
- Exclusion of slow progressors (less than a 1-point decline over 3 months prior to randomization), and fast progressors (more than a 4-point decline over 3 months prior to randomization).
- 50 fast progressors included for exploratory analysis

Enrolment: 550 patients

Duration: 48 weeks

Primary endpoint: Change in the ALSFRS-R score

Optimizations from previous phase 3

Enriched inclusion criteria

- Previous study had broad inclusion criteria, with 20% having a loss of function at baseline (i.e. sore of 0 on at least 1 item of ALSFRS score)
- In new study, patients are less advanced in their disease and a doubling of the treatment effect is expected

Testing of a higher dose of 6.0 mg/kg/day

In previous study, only 3.0 or 4.5 mg/kg/day were tested and a dose effect was observed. Greater efficacy is expected with the dose of 6.0 mg/kg/day

Dose titration

With dose titration from 3.0 to 4.5 and then 6.0 mg over a 2month period, marginal discontinuation rate is expected

Status

Actively recruiting patients

Masitinib is positioned in patients with mild and moderate dementia, which is different from other compounds

Disease severity	MMSE Score (mini mental state examination)
Prodromal	> 25
Mild	[21 – 25]
Moderate	[12 – 20]
Severe	< 12

Aducanumab

Prodromal AD
> 22 / > 24

Mild & Moderate AD [12 – 25]

Masitinib

Study AB09004 evaluated in patients with mild and moderate AD, three doses of masitinib, each dose having its own placebo control

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, phase 3 study

Groups

- Masitinib 3 mg/kg/day (stopped early based on IDMC recommendation)
- Masitinib 4.5 mg/kg/day, randomisation 1:1
- Masitinib titration 4.5 to 6.0 mg/kg/day, randomisation 2:1

Enrolment: 718 patients

Duration: 24 weeks

Primary endpoint:

- Change in ADAS-Cog
- Change in ADCS-ADL

Main inclusion criteria

- Patient with dementia of Alzheimer's type, according to the Diagnostic and Statistical Manual of Mental Disorders criteria (DSM-IV)
- Patient with probable Alzheimer' disease according to the NINCDS-ADRDA criteria (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association)
- 3) Patient with MMSE \geq 12 and \leq 25 at baseline
- 4) Patient treated for a minimum of 6 months with a stable dose of cholinesterase inhibitors and/or a stable dose of memantine, with no changes foreseen in therapy throughout the study.

Pre-specified Analysis Plan

Statistical analysis:

- Statistical risk Alpha (chance finding) splited between ADAS-COG (2.5%) or ADCS-ADL (2.5%).
- Study is successful if the treatment effect is established in at least one of the two primary endpoints

Stratification factors

- MMSE score at baseline
- Age at baseline
- ADCS-ADL total score at baseline
- ADAS-COG total score at baseline

The Phase 2B/3 study demonstrated a statistically significant reduction in Cognitive impairment based on ADAS-COG (p=0.0003) and improvement on daily activity based on ADCS-ADL (p=0.0381) with masitinib 4.5 mg/kg/day

Significant effect on cognitive function after 24 weeks of treatment

Change in ADAS-Cog - ANCOVA Analysis (Full Analysis Set) - M4.5 vs Placebo

	Descriptive Statistics		Model Summary - LSM		Difference		
Treatment	n	Mean (SD)	LS Mean	95% CI	LS Mean (SE)	97.51% CI	p-value
Masitinib 4.5 mg/kg/day + SoC	182	-1.51 (5.81)	-1.46	(-2.46, -0.45)	-2.15 (0.59)	(-3.48, -0.81)	0.0003
Placebo + SoC	176	0.63 (5.35)	0.69	(-0.36, 1.75)	2.10 (0.03)	(3.10, 0.01)	0.0003

Significant effect on daily activity after 24 weeks of treatment

Change in ADCS-Adl - ANCOVA Analysis (Full Analysis Set) - M4.5 vs Placebo

	Descriptive Statistics		Model Summary - LSM		Difference		
Treatment	n	Mean (SD)	LS Mean	95% CI	LS Mean (SE)	97.51% CI	p-value
Masitinib 4.5 mg/kg/day + SoC	182	0.51 (7.78)	1.01	(-0.48, 2.50)	1.82 (0.87)	(-0.15, 3.79)	0.0381
Placebo + SoC	176	-1.09 (9.17)	-0.81	(-2.36, 0.74)	1.82 (0.87)	(-0.13, 3.73)	0.0361

There were significantly fewer patients reaching severe dementia stage (MMSE<10) and a significant decrease in time to severe dementia with masitinib 4.5 mg/kg/day compared with the pooled placebo arms

Significant effect on severe dementia (MMSE<10) with masitinib 4.5 versus combined placebo

Dementia- M4.5 vs Placebo Pooled (FAS)

								p-value		Hazard	
Treatment group	Total	No. of Events	Percentage Events	No. Censored	Percentage censored	Median [95% CI]	KM p- Value	Log Rank	Ratio (95% CI)	p-Value	
Masitinib 4.5 mg/kg/day	182	2	1.10	180	98.90	Not reached [;]	0.0447	0.0403	0.19	0.0377	
Pooled Placebo	267	15	5.62	252	94.38	6.3 [5.9;6.3]	0.0446		(0.0,0.8)	0.0276	

Baseline MMSE (FAS)	Masitinib + SoC (N = 182)	Pooled Placebo + SoC (N =267)
< 14	18 (9.9)	30 (11.2)
< 17	54 (29.7)	81 (30.3)

Multiple Sclerosis

Tremendous unmet need, with no approved drugs for non-active SPMS and only one for PPMS

		Masitinib Positioning Label					
	Manufacturer	Primary Progressive MS	Non-active Secondary Progressive MS*	Active Secondary Progressive MS	Relapsing Remitting MS	First approved	
Distribution of patients (Estimated Nbr of patients Europe + USA)		15 % (~ 150 000)	35 % (~ 350 000)	10% (~ 90 000)	40 % (~ 400 000)		
Total number of drugs registered		1	0	16	16		
Zeposia (ozanimod)	BMS			X	Χ	2020	
Mayzent (siponimod)	Novartis			X	Χ	2019	
Vumerity (diroximel fumarate)	Alkermes / Biogen			X	Χ	2019	
Ocrevus (ocrelizumab)	Roche / Genentech	X		X	Χ	2017	
Mavenclad (cladribine)	EMD Serono / Merck			X	Χ	2017	
Plegridy (peginterferon beta-1a)	Biogen			X	Χ	2014	
Tecfidera (dimethyl fumarate)	Biogen			X	Χ	2013	
Aubagio (Teriflunomide)	Sanofi-Aventis			X	Χ	2012	
Gilenya (fingolimod)	Novartis			X	Χ	2010	
Extavia (interferon beta-1b)	Novartis			X	Χ	2008	
Tysabri (natalizumab)	Biogen			X	Χ	2004	
Lemtrada (alemtuzumab)	Sanofi / Genzyme			X	Х	2001	
Rebif (interferon beta-1b)	Serono			X	Х	1998	
Avonex (interferon beta-1a)	Biogen			X	Х	1996	
Copaxone (glatiramer acetate)	Teva Pharms			X	Х	1996	
Betaferon / Betaseron (interferon beta-1b)	Bayer Healthcare			X	Х	1993	

^{*:} Non-active SPMS is a stage of MS that follows relapsing-remitting multiple sclerosis and that is characterized with an EDSS score progression ≥ 1 point without any relapse in the last 2 years.

Multiple Sclerosis

Study AB7002 evaluated two masitinib doses in patients with PPMS and non-active SPMS.

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, phase 3 study

Groups

- Masitinib 4.5 mg/kg/day versus its own placebo
- Masitinib titration 4.5 to 6.0 mg/kg/day versus its own placebo
- Randomisation 2:1

Enrolment: 611 patients*

Duration: 96 weeks

Primary endpoint: Change from baseline in absolute EDSS value averaged over the two-year

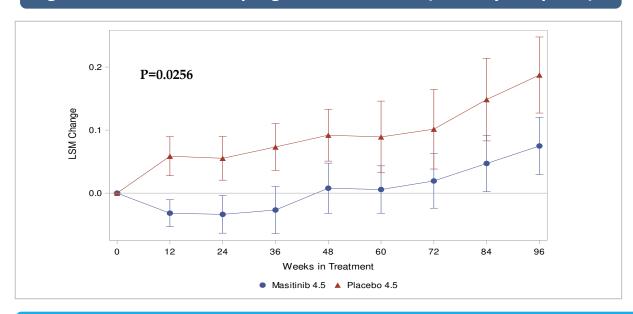
study

Main inclusion criteria

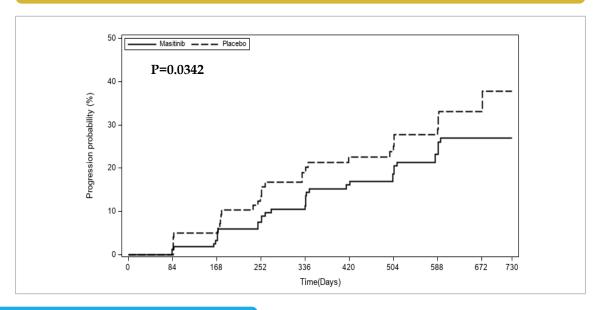
- Patient with Primary Progressive (PPMS) or Non-active secondary progressive multiple sclerosis (nSPMS) defined as:
 - No relapse (measured by EDSS progression, not by imaging) within 2 years before inclusion according to the revised McDonald's criteria
 - EDSS score progression ≥ 1 point within 2 years before inclusion
- 2) Must be EDSS and age requirements
 - EDSS score of [2.0 to 6.0] inclusive at baseline
 - Age 18 to 75 years old

Pre-specified Analysis Plan

Statistical analysis:


 Study AB7002 is treated as two independent sub-studies under a common study identifier, with alpha control set at 5% for each dose

Multiple Sclerosis



Phase 2B/3 demonstrated significant benefit on disability progression with masitinib 4.5 mg/kg/day

Significant reduction in progression on EDSS (Primary Endpoint)

42% risk reduction of time to disability progression

Patients were enrolled at advanced disease stage

- Median age (years):
- Media Duration of First MS Symptom to Randomization (years):
- Median EDSS Score:
- % of patients with EDSS score of 6:

- 50.0 (both masitinib and placebo)
- 12.4 masitinib and 12.2 placebo
- 5.5 (both masitinib and placebo)
- 49.0% masitinib and 47.5% placebo

Neurology

Blockbuster Opportunity across three indications

Indication	Phase of Development	Annual cost of registered Drugs (USD)	No US Patients	No EU Patients	Penetration	Market Opportunity US (M€)	Market Opportunity EU (M€)
ALS	Positive phase 2/3 study Launch of confirmatory phase 3 study	• Radicava (145,000)	20,000 ²	30,000²	50%	800 (based on a 80,000€ annual price)	1,200 (based on a 80,000€ annual price)
MS	Positive phase 2/3 study	 Ocrevus (65,000) Rebif (61,800) Extavia (61,848) Lemtrada (158,000) Copaxone (66,000) 	200,000 ¹	300,000 ¹	33%	4,000 (based on a 60,000€ annual price)	6,000 (based on a 60,000€ annual price)
Alzheimer's	Positive phase 2/3 interim analysis	No branded drug	2,000,000³	3,000,000³	25%	15,000 (based on a 30,000€ annual price)	22,000 (based on a 30,000€ annual price)

Source

Population: https://data.worldbank.org/indicator/SP.POP.TOTL and https://ec.europa.eu/eurostat/web/population-demography-migration-projections/population-data/main-tables

1: Antel J, Antel S, Caramanos Z, Arnold DL, Kuhlmann T. Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity? Acta Neuropathol. 2012 May;123(5):627-38. Paz Soldán MM, et al. Relapses and disability accumulation in progressive multiple sclerosis. Neurology. 2015 Jan 6;84(1):81-8

2: Meta-analysis from 7 studies

- (1) Logroscino G et al. EURALS. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010; 81:385-90
- (2) Huisman MH et al. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J Neurol Neurosurg Psychiatry. 2011; 82:1165-70
- (3) Ragonese P et al. Incidence of amyotrophic lateral sclerosis in Sicily: A population based study. Amyotroph Lateral Scler. 2012; 13(3):284-7
- (4) Abhinav K et al. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology. 2007;29:44-8
- (5) Imam I et al. The epidemiology of motor neurone disease in two counties in the southwest of England. J Neurol. 2010; 257:977-81
- (6) Hoppitt T et al. A systematic review of the incidence and prevalence of long-term neurological conditions in the UK. Neuroepidemiology. 2011; 36:19-28
- (7) Gundersen MD et al. Incidence and Clinical Features of Amyotrophic Lateral Sclerosis in Møre and Romsdal County, Norway. Neuroepidemiology. 2011;37:58–63

Masitinib in Neurology Inflammatory Diseases

Indolent Systemic Mastocytosis (ISM)

Mast Cell Activation Syndrome (MCAS)

Severe Asthma

Indolent Systemic Mastocytosis (ISM)

Study AB06006 evaluated masitinib versus placebo in 135 patients with ISM and severe symptoms at baseline.

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, phase 3 study

Groups

- Masitinib 6 mg/kg/day versus its own placebo
- Randomisation 1:1

Enrolment: 135 patients with ISM

Duration: 24 weeks

Primary endpoint:

- Number of cumulative responses on 4 severe symptoms from week 8 to week 24
- Severe symptoms are Pruritus, flushes, depression, and asthenia

Main inclusion criteria

- 1) Patient with one of the following documented mastocytosis as per WHO classification:
 - Smouldering Systemic Mastocytosis
 - Indolent Systemic Mastocytosis
- 2) Patient unresponsive to optimal symptomatic treatment
- 3) At least one severe symptom (handicap) at baseline. A handicap was defined as a baseline symptom above predefined severity threshold
 - Pruritus score : ≥ 9
 - Number of flushes per week : ≥ 8
 - Depression (HAMD-17) score : ≥ 19
 - Asthenia (FIS) total score :≥ 75

Pre-specified Analysis Plan

Response:

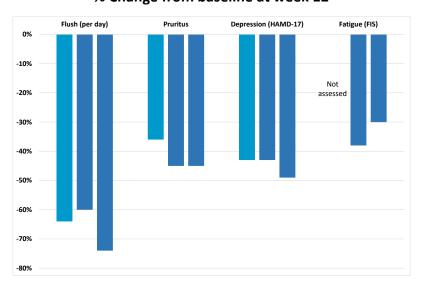
- Decrease of ≥75% in any 4 handicap
- 5 assessments at w8, w12, w16, w20, w24

Calculation

- Patients can have between 1 and 4 handicaps at baseline
- Therefore a patient can score for 1 to 4 responses at each timepoint

The primary endpoint presented for each treatment arm the number of actual responses divided by the total of theoretical responses

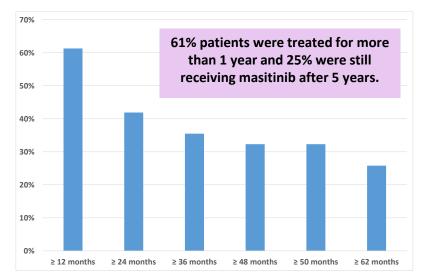
Statistical calculation of the p-value is based on the GEE (generalized estimating equation) model that takes into consideration correlation across variables and across time so that valid inferences can be assured. Missing data = failure


Indolent Systemic Mastocytosis

Phase 2 showed masitinib is effective on key disease symptoms, regardless of c-Kit mutation status, and efficacy is sustainable

Improvement in disease symptoms

% Change from baseline at week 12


Phase 2 with c-Kit D816 mutation (n=21,single arm)

Phase 2 without c-Kit D816V (n=25, single arm)
(Middle columns represents patients with moderate baseline symptoms and right column represents patient with severe baseline symptoms)

Masitinib inhibits mast cells, regardless of c-Kit mutation status, through c-Kit, Lyn and Fyn kinases

Sustained efficacy

% of patients still under treatment

Pooled phase 2 (n=46,single arm)

Reduction in urticaria pigmentosa

Indolent Systemic Mastocytosis

Phase 3 demonstrates significant reduction in symptoms with masitinib 6.0 mg/kg/day

3.6 fold improvement in most prevalent symptoms

Improvement in objective markers of the disease

		Masitinib	Placebo	p-value	Odds ratio
Primary Analysis	4H75% pruritus, flushes, depression, asthenia	18.7%	7.4%	0.0076	3.63
Secondary Analyses	3H75% pruritus, flushes, depression	24.7%	9.8%	0.0071	3.06
	2H75% pruritus or flushes	27.2%	10.7%	0.038	2.63
	Pruritus 75% pruritus	22.0%	7.3%	0.032	3.13

	Masitinib	Placebo	p-value
Tryptase - Patients with baseline tryptase ≥20 μg/L	46	44	0.0001
Average relative change from baseline Mean±SD	nge from baseline Mean \pm SD -18.0 ± 21.4 2.2 ± 26.9		0.0001
Urticaria Pigmentosa (UP) - Patients with baseline UP	33	36	0.0210
Average relative change from baseline in the Body Surface Area (BSA) covered by UP (Wallace correction)	-12.34 ± 26.41	15.91 ± 59.79	
Darier's sign – Number of patients (baseline)	37	37	
Response rate for Darier's sign disappearance (Yes/No) in patients with "Darier's sign" at baseline	18.92%	2.70%	0.0187

Cumulative response based on the generalized estimating equation model with missing data considered as failure. Longitudinal analysis with respect to symptoms as opposed to patient response rate at a single point in time. Response rates expressed as ratio of sum of actual responses between weeks 8 and 24 divided by the total number of possible responses over the same treatment period.

Response = 75% reduction from baseline in symptoms severity

NOTE that in Lancet article these endpoints use the nomenclature 4R75% etc, R standing for 'response', a term preferred over 'Handicap'.

⁴H75% = cumulative response in severe symptoms present at baseline among the four pruritus, flushes, depression, asthenia.

³H75% = cumulative response in severe symptoms present at baseline among the three: pruritus, flushes, depression.

²H75% = cumulative response in severe symptoms present at baseline among the two: pruritus, flushes.

Indolent Systemic Mastocytosis

On-going confirmatory phase 3 study, with design validated by key health authorities

Confirmatory phase 3 design

Design: Double blind, placebo controlled, randomized 1:1, comparing masitinib titration up to 6.0 mg/kg/day with placebo

Main inclusion criteria: Smouldering or Indolent Mastocytosis, with severe symptoms at baseline (Pruritus score \geq 9 and/or Flushes per week \geq 8 and/or HAMD-score \geq 19) and in failure to optimal symptomatic treatment

Enrolment: 140 patients

Duration: 24 weeks

Primary endpoint: Cumulative 75% response rate on baseline severe symptoms/handicaps among (pruritus, flush, depression). Response on a handicap is defined as an improvement ≥ 75% for pruritus, flushes and depression.

Optimizations from previous phase 3

Dose Titration

- In previous study, starting dose of 6 mg/kg/day without titration
- This led to 20% treatment discontinuation, with discontinuation equal to treatment failure in the analysis
- With dose titration from 3.0 to 4.5 and then 6.0 mg over two months period, marginal discontinuation rate

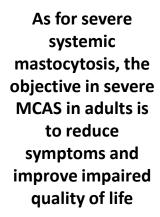
Run-in period

- In previous study, there was no run-in to ensure that patients were taking optimal symptomatic treatment at screening
- In new study, one-month run-in period to control failure to symptomatic treatment

Status

Actively recruiting patients

MCAS (Mast Cell Activation Syndrome)



MCAS is a disease caused by activation of mast cells

Disease Features

- MCAS is a common disease associated with numerous symptoms.
 - Symptoms are similar to mastocytosis ones and include
 - Fatigue,
 - Neurologic/psychiatric symptoms,
 - Pain
 - Pruritus,
 - Nausea, abdominal cramping and diarrhea,
 - Anaphylaxis, hypotension, tachycardia or unexplained arrhythmias,
 - But affects around 5 to 10% of general population
 - MCAS can be diagnosed by specific markers of mast cell hyperactivity:
 - Elevated blood levels of mast cell-specific mediators (tryptase, histamine, and heparin)
 - Elevated level of histamine into the urine
 - No urticaria pigmentosa unlike mastocytosis
 - Clonal like mastocytosis or not remains to be explored
- MCAS can be severe
 - As for systemic mastocytosis, MCAS symptoms can be mild, moderate, or severe
 - Proportion of severe forms is unknown
 - Could include part of multiple sclerosis, Crohn's disease, inflammatory bowel disease,
 Duchenne muscular dystrophy, chronic fatigue syndrome

Treatment Objectives

MCAS (Mast Cell Activation Syndrome)

Study AB20006 is a phase 2 evaluating ascending doses of masitinib

Design

Design:

Randomized, double-blind, placebo-controlled, parallel-group, multicenter comparative study with ascending dose titrations of masitinib and matching placebo

Randomisation: 2:1

Planned Enrolment: 60 patients

Duration: 24 weeks

Primary endpoint: Cumulative response at 50% on 3 handicaps

(pruritus, flush, depression) from W8 to W24.

Main inclusion criteria

- 1) Patient with severe Mast cell activation syndrome (MCAS) diagnosed based on both clinical and biomarker criteria
- 2) Patient with documented symptomatic treatment failure
- 3) Patients treated with stable dose of Anti-H1

Severe Asthma Uncontrolled with Oral Corticosteroids

Study AB07015 evaluated masitinib 6.0 mg/kg/day in patients with severe asthma uncontrolled by OCS

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, phase 3 study

Groups

- Masitinib 6 mg/kg/day versus its own placebo
- Randomisation 2:1

Enrolment:

- 409 patients randomized
- 355 patients with severe asthma (OCS ≥ 7.5 mg)
- 268 patients with severe asthma and eosinophils ≥ 150K/uL

Duration: 36 weeks + blinded extension

Primary endpoint: Number of severe asthma exacerbations divided by the time under treatment for the overall protocol period

Main inclusion criteria

- Oral corticosteroids (OCS) dose ≥ 7.5 mg daily for at least 3 months prior to screening visit.
- Patient with history of severe asthma ≥ 1 year
 - baseline FEV1 ≥35 to <80% of the predicted normal value
 - at least 2 asthma exacerbations within one year prior to screening visit
- 3) Both high (≥ 150K/uL) and low (<150K/uL) eosinophils.

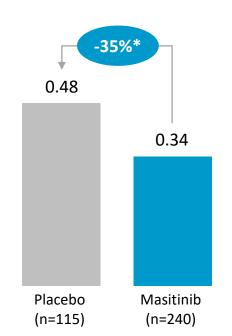
Pre-specified Analysis Plan

Primary analysis:

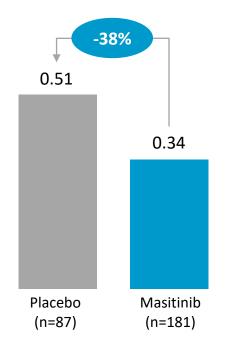
 Study powered to detect 33% reduction on severe asthma exacerbation in severe asthma population (OCS dose ≥ 7.5 mg))

Definition

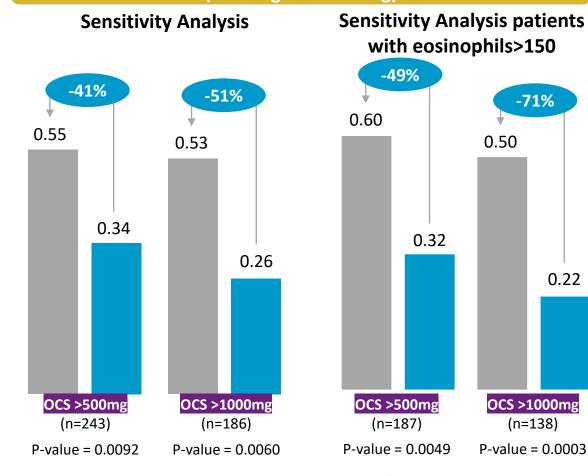
 Severe asthma exacerbation rate defined as asthma worsening that requires an increase from stable maintenance dose of corticosteroids for at least three days and /or hospitalization because of Asthma


Severe Asthma Uncontrolled with Oral Corticosteroids

Significant decreases in asthma exacerbations regardless of eosinophil level


Annualized severe asthma exacerbation rate

Primary Analysis


Relative risk reduction = 0.65 95% CI: 0.47, 0.90. p-value < 0.0103

Sequential Analysis patients with eosinophils>150

Relative risk reduction = 0.62 95% CI: 0.42, 0.91. p-value < 0.0156

Greater benefit in patients with higher cumulative OCS (>500mg or >1000mg)

Higher cumulative OCS is indicative of more severe asthma

^{*} ITT analysis: -33%, p=0.0156

Severe Asthma Uncontrolled with Inhaled Corticosteroïds

Study AB14001 evaluated masitinib titration up to 6.0 mg/kg/day in patients with severe asthma uncontrolled by ICS and with elevated eosinophil levels

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, phase 3 study

Groups

- Masitinib titration 3.0 to 4.5 to 6.0 mg/kg/day versus its own placebo
- Randomisation 2:1

Enrolment:

- 347 patients randomized
- 295 patient in claim (Exclusion of patients with eosinophils <150K/uL)

Duration: 36 weeks + blinded extension

Primary endpoint: Number of severe asthma exacerbations divided by the time under treatment for the overall protocol period

Main inclusion criteria

- Patient with history of severe asthma ≥ 1
 year partially controlled or uncontrolled on
 ICS/LABA combination therapy
 - baseline FEV1 ≥35 to <80% of the predicted normal value
 - at least 2 severe asthma exacerbations within one year prior to screening visit
- 3) Eosinophils $\geq 150 \text{K/uL}$

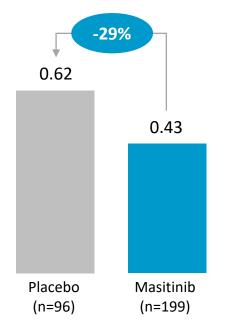
Pre-specified Analysis Plan

Primary analysis:

 Study powered to detect 33% reduction on severe asthma exacerbation in severe asthma population with eosinophils ≥ 150K/uL (Claim)

Definition

 Severe asthma exacerbation rate defined as asthma worsening that requires an increase from stable maintenance dose of corticosteroids for at least three days and /or hospitalization because of Asthma


Severe Asthma Uncontrolled with Inhaled Corticosteroïds

Phase 3 AB14001 in severe asthma uncontrolled by high-dose inhaled corticosteroids (ICS) and with high eosinophil level also met its primary endpoint

Annualized severe asthma exacerbation rate

Primary Analysis

Relative risk reduction = 0.71 95% CI: 0.53, 0.95. p-value = 0.0217 Significant improvement in quality of life

- Δ ACQ = -0.2085 (p=0.039)
- Δ AQLQ = 0.2741 (p=0.0177)

Inflammatory Diseases

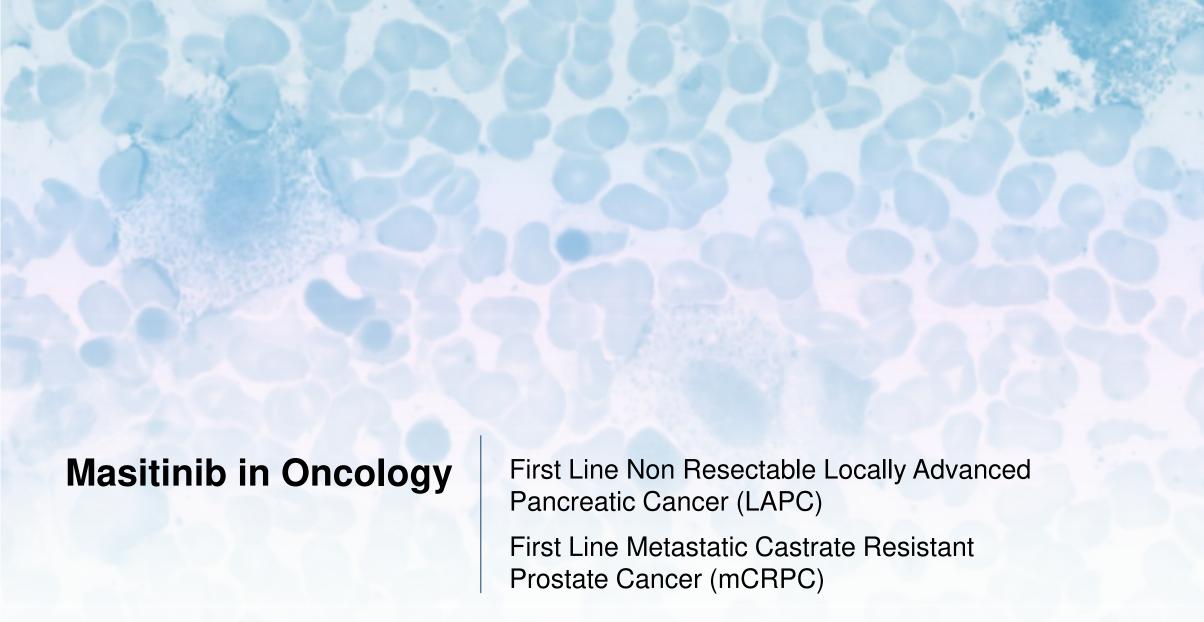
Strong market potential across three indications

Indication	Phase of Development	Annual cost of drugs registered in similar indication (USD)	No US Patients	No EU Patients	Penetration	Market Opportunity US (M€)	Market Opportunity EU (M€)
ISM	Launch of confirmatory phase 2/3 study	No registered drug	25,000³	40,000³	50%	500 (based on a 40,000€ annual price)	800 (based on a 40,000€ annual price)
Severe Asthma	Positive phase 2/3 study	 Nucala (35,000) Cinqair (31,000) Fasenra (31,000) Dupixent (31,000) Gleevec (32,000) Xolair (13,000) 	275,000 ⁴	550,0004	33%	3,000 (based on a 30,000€ annual price)	5,500 (based on a 30,000€ annual price)
MCAS	Launch of a Phase 2 study	No registered drug	200,0005	300,0005	50%	4,000 (based on a 40,000€ annual price)	6,000 (based on a 40,000€ annual price)

Source :

Population: https://data.worldbank.org/indicator/SP.POP.TOTL and https://ec.europa.eu/eurostat/web/population-demography-migration-projections/population-data/main-tables

3: Cohen SS, Skovbo S, Vestergaard H, et al. Epidemiology of systemic mastocytosis in Denmark. Br J Haematol 2014; 166: 521-8. Population Division, U.S. Census Bureau.


Theoharides T., Valent P., Akin C., NEJM 2015. Mast Cells, Mastocytosis, and Related Disorders

4: Respir Med. 2006 Jul;100(7):1139-51. Epub 2006 May 18.

J Investig Allergol Clin Immunol 2012; Vol. 22(7): 460-475

Data from study AB07015 for the proportion of patients with oesinophil level between 150 and 300 and above 300

^{5:} Molderings GJ, Haenisch B, Bogdanow M, Fimmers R, Nöthen MM. Familial Occurrence of Systemic Mast Cell Activation Disease. PLoS One. 2013;8:e76241.
Haenisch B, Nöthen MM, Molderings GJ. Systemic mast cell activation disease: the role of molecular genetic alterations in pathogenesis, heritability and diagnostics. Immunol. 2012; 137:197–205.
Severe MCAS accounting for 5% of MCAS patients (Company's estimation)

Scientific Rationale

Innate immune cells, in particular mast cells and macrophages, are critical components of the tumor microenvironment, promoting angiogenesis and tumor growth, and also contribute to tumorigenesis by suppression of the immune response

- There is a compelling body of evidence implicating mast cells in the orchestration of tumor microenvironment remodeling and specifically pancreatic cancer cell proliferation, invasion, and metastasis.
- An intense crosstalk between mast cells and pancreatic cancer cells contributes to the pancreatic ductal adenocarcinoma progression. Mast cells contribute to the aggressiveness of the pancreatic ductal carcinoma enhancing the expression of several pro-angiogenic factors [1].
- Mast cell activity within the tumor microenvironment promotes disease progression via release of numerous pro-tumoral factors [2–7].
- Increased mast cell infiltration into the tumor is known to promote disease progression and is a prognostic factor for poor survival in pancreatic ductal adenocarcinoma patients [8–15].
- **❖** Mast cells down-regulate the immune response to tumors and skew polarization of tumor-associated macrophages (TAM) towards a protumoral macrophage type-2 (M2) [16−21].
- Masitinib's highly selective inhibition of mast cell survival and activation modulates mast cell related remodeling of the tumor microenvironment, thereby inhibiting tumor growth and also redirects the immune system toward an anti-tumoral TH1-type response

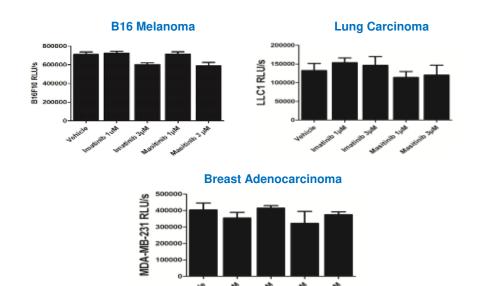
References

[1] Longo V, et al. Clin Exp Med. 2018 Aug;18(3):319-323; [2] Komi DEA, et al. Clin Rev Allergy Immunol. 2020;58(3):313-325; [3] Aponte-López A, et al. Adv Exp Med Biol. 2020;1273:159-173; [4] Liu CY, et al. Lab Invest. Jul 2013;93(7):844-854; [5] Dyduch G, et al. Pol J Pathol. Mar 2012;63(1):1-7; [6] Khazaie K, et al. Cancer Metastasis Rev. Mar 2011;30(1):45-60; [7] Theoharides TC. N Engl J Med. Apr 24 2008;358(17):1860-1861; [8] Ammendola M, et al. Oncotarget. 2017;8(41):70463-70471; [9] Protti MP, et al. Front Physiol. 2013;4:210; [10] Ma Y, et al. Cancer Res. Jul 1 2013;73(13):3927-3937; [11] Cai SW, et al. Surgery. Apr 2011;149(4):576-584; [12] Chang DZ, et al. Clin Cancer Res. Nov 15 2011;17(22):7015-7023;13(10):1211-1218. [13] Strouch MJ, et al. Clin Cancer Res. Apr 15 2010;16(8):2257-2265; [14] Soucek L, et al. Nat Med. Oct 2007; [15] Ribatti D, et al. Br J Haematol. Dec 2001;115(3):514-521; [16] Padoan et al. Int J Mol Sci. 2019 Feb 5;20(3):676; [17] Vilalou et al. Cytokine Growth Factor Rev. 2018;39:46-61; [18] Evans A, et al. Front Physiol. 2012;3:270; [19] Dyduch G, et al. Pol J Pathol. Mar 2012;63(1):1-7.26; [20] Maltby S, et al. Biochim Biophys Acta. Aug 2009;1796(1):19-26; [21] Christy AL, et al. J Immunol. Sep 1 2007;179(5):2673-2679.

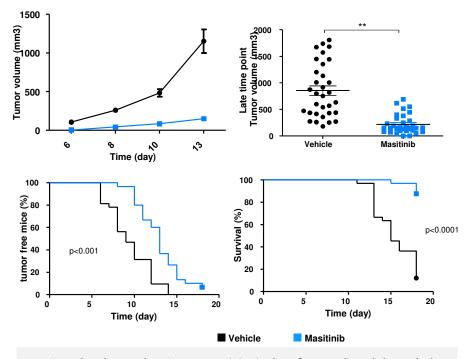
Pain in cancer

The presence of pain in pancreatic cancer is thought to flag an increased mast cell activity within the tumor microenvironment, which in turn promotes disease progression. Pain therefore effectively identifies those patients with a pro-tumoral immune response

- There is evidence that mast cell degranulation mediates cancer-induced pain and that pain is a clinical predictor of poor prognosis in pancreatic cancer.
- * Mast cell infiltration is strongly implicated with development of neuropathic pain in pancreatic ductal adenocarcinoma patients [1].
- Mast cells contribute to pancreatic carcinoma-induced visceral hypersensitivity through enrichment and degranulation in pericarcinoma tissues [2].
- **Mast cells within the cancer microenvironment potentiate and prolong protease-induced cancer pain [3].**
- Considerable neural remodeling of intrapancreatic nerves is observed in pancreatic ductal adenocarcinoma patients experiencing pain and perineural invasion has also detected in the early stages of pancreatic cancer, which is associated with pain, increased tumor recurrence and diminished overall survival [4,5].
- **Pain** intensity correlates to disease progression and significantly poorer survival rate in pancreatic cancer [5-10]


References

Pharmacology Data - Masitinib targets tumor microenvronment


Masitinib has no direct "tumor killer" general activity but has shown efficacy on tumor proliferation in vivo, mediated through the tumor micro-environment

No direct effect on tumor cells in vitro...

In vitro, in tumors which are not driven by c-kit or other relevant kinases tyrosine kinase, inhibition by masitinib did not have any direct effect on tumor proliferation

...but decreases tumor volume growth in vivo

In vivo, the observed anti tumor activity is therefore mediated through the tumor micro-environment

Based on this mechanism of action targeting the tumor micro-environment and not distant metastasis, masitinib is expected to be effective at the early stage of metastatic process, flagged by Alkaline phosphatase in prostate cancer

Study AB12005 evaluated masitinib 6.0 mg/kg/day in first line pancreatic cancer patients with pain

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, 2-parallel groups, phase 3 study

Groups

- Masitinib 6.0 mg/kg/day + gemcitabine versus
 Placebo + gemcitabine
- Randomisation: 2:1

Enrolment

- 92 patients locally advanced pancreatic cancer (LAPC)
- 383 patients in the overall population (metastatic and LAPC)

Primary endpoint: Overall Survival

Main inclusion criteria

- Histologically or cytologically confirmed adenocarcinoma of the pancreas, non resectable locally advanced or metastatic stage
- 2) Patient with pain related to the disease:
 - Pain defined as clinical and documented evaluation by the investigator during physical examinations.
 - Pain, as assessed by the patient is defined as Visual Analogue Scale > 20mm

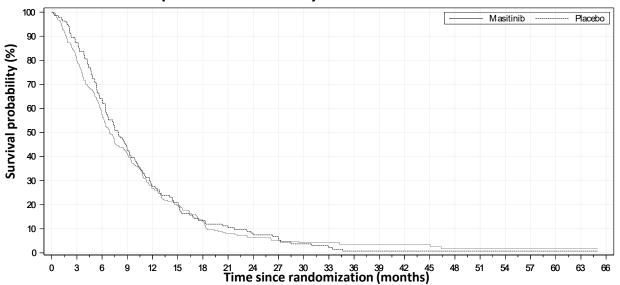
OR

- Patient treated with opioid analgesics at a dose ≥ 1 mg/kg/day (morphinic equivalent).
- First line of treatment (Chemotherapy naïve patient for the advanced/metastatic disease)

Pre-specified Analysis Plan

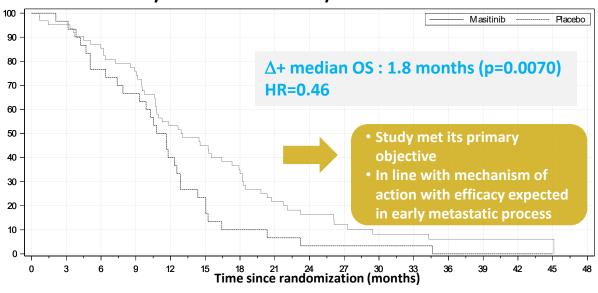
Statistical analysis: Alpha spending split between the overall population (2.5%) and locally advanced subgroup (2.5%).

Stratification factors


- Patients with locally advanced pancreatic cancer versus patients with metastatic pancreatic cancer (only for the overall population)
- ECOG grade 0 versus grade 1 versus grade 2
- Country

There was no benefit in the overall population, yet the study met its primary endpoint with significant OS increase (+1.8 months median, p=0.007, below 2.5%) in population with locally advanced tumors

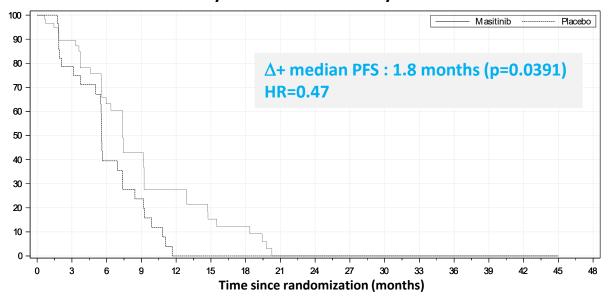
No benefit on survival in the Overall Population (metastatic + LAPC)


Overall Population - KM Analysis of Overall Survival - mITT

					p-value	Haz	ard
Treatment group	Total	No. of Events	% censored	Median 97.5% CI	Log Rank	Ratio (97.5 CI)	p-Value
Masitinib	244	235	3.69	6.9 [6.1;8.1]	0.4614	1.16	0.1844
Placebo	135	133	1.48	8.0 [6.4;9.2]		(0.9,1.4)	

54% risk reduction of time to death in LAPC

Locally advanced – KM Analysis of Overall Survival


					p-value	Haz	ard
Treatment group	Total	No. of Events	% censored	Median 97.5% CI	Log Rank	Ratio (97.5 CI)	p-Value
Masitinib	62	57	8.06	13.0 [11; 18]	0.0070	0.46	0.0047
Placebo	30	30	0.00	11.2 [7.4; 13]	0.0070	0.46 (02,0.9)	0.0047

Progression free survival and response rate were in favor of masitinib and consistent with survival results

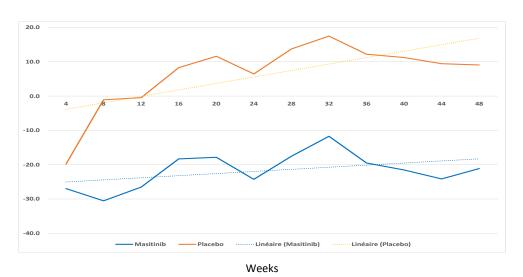
53% risk reduction of time to progression in locally advanced

Locally advanced – KM Analysis of PFS

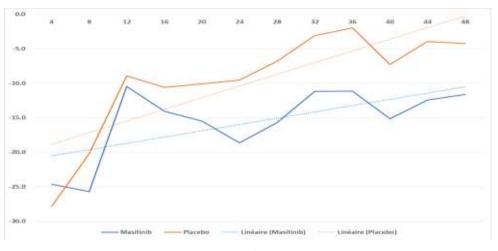
					p-value	Hazard	
Treatment group	Total	No. of Events	% censored	Median 95% CI	Log Rank	Ratio (CI)	p-Value
Masitinib	62	38	38.71	7.4 [5.6;9.2]	0.0391	0.47	0.0136
Placebo	30	26	13.33	5.6 [5.1;7.4]	0.0391	(0.3,0.9)	0.0136

ORR 14.5% (M) vs 3.3% (P) in locally advanced

Best Response	Masitinib	Placebo		
Complete Response	-	-		
Partial Response	9 (14.5%)	1 (3.33%)		
Stable Disease	43 (69.4%)	21 (70.0%)		
Progressive Disease	3 (4.84%)	6 (20.0%)		
No post-baseline	7 (11.3%)	2 (6.67%)		


ORR : Objective Response rate = Complete response + Partial respon

Masitinib reduced pain in patients with locally advanced tumors, supporting the rationale for targeting this population having pain at baseline


Significant improvement vs control in pain in locally advanced

Locally advanced – Change from baseline in VAS (LS Mean)

Numerical improvement vs control in pain in overall population

Overall Population - Change from baseline in VAS (LS Mean) - mITT

Metastatic Castrate Refractory Prostate Cancer (mCRPC)

Masitinib is positioned in combination with docetaxel as first-line treatment of mCRPC eligible to chemotherapy

	Stage of the desease	Registered Drug ¹
		Enzalutamide (Xtandi)
1	High-risk non Metastatic Castration Resistant Prostate Cancer (before chemotherapy)	Abiraterone (Zytiga)
		Apalutamide (Erleada)
		Sipuleucel T (Provenge)
		Abiraterone (Zytiga)
2	Metastatic Castration Resistant Prostate Cancer early stage (before chemotherapy)	Enzalutamide (Xtandi)
		Olaparib² (Lynparza)
		Rucaparib² (Rubraca)
3	Metastatic Castration Resistant Prostate Cancer eligible to chemotherapy	Docetaxel
		Abiraterone (Zytiga)
4	Metastatic Castration Resistant Prostate Cancer after relapse from chemotherapy	Enzalutamide (Xtandi)
		Cabazitaxel (Jevtana)

Metastatic Castrate Refractory Prostate Cancer (mCRPC)

Study AB12003 evaluated masitinib 6.0 mg/kg/day in combination with docetaxel versus docetaxel alone in first-line treatment of mCRPC

Design

Design

Prospective, multicenter, randomized, double blind, placebo-controlled, 2-parallel groups, phase 3 study

Groups

- Masitinib 6.0 mg/kg/day + Docetaxel at 75 mg/m² versus Placebo + Docetaxel at 75 mg/m²
- Randomisation: 1:1

Enrolment

- 451 patients in sub-group of early metastases (biomarker : ALP ≤ 250 IU/ml)
- 714 patients in the overall population

Primary endpoint: Progression Free Survival (PFS as per PCWG2)

Main inclusion criteria

- 1) Patient with histologically or cytologically confirmed metastatic Castrate Resistant Prostate Cancer (medical or surgical castration: androgens deprivation by GnHR agonist or antagonist or patient with surgical castration; hormonal castration confirmed biologically (testosterone < 0.5ng/ml) with one of the following criteria:
 - Pre-treated with abiraterone with progressed disease documented, OR
 - With indication for initiating docetaxel administration (e.g., widespread visceral disease or rapidly progressive disease).
- Patient with evidence of progressive metastatic disease.
- 3) Patient with ECOG ≤ 1

Pre-specified Analysis Plan

The study tested the success of the primary endpoint in two populations

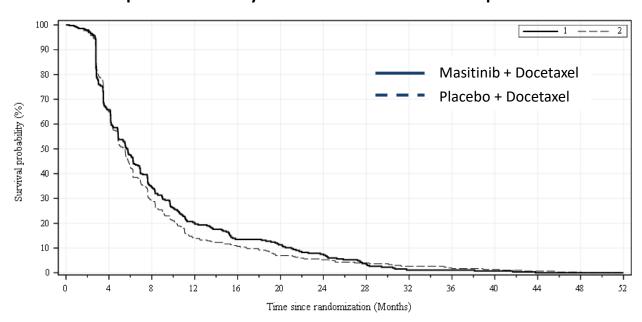
- Overall population
- Targeted subgroup of interest based on Alkaline Phosphatase (ALP) ≤ 250 IU/ml

Targeted subgroup of interest

- Patients most likely to respond to masitinib is predefined as patients with lower extent of metastases based on biologic biomarker (ALP ≤ 250 IU/ml)
- It was assumed that approximately that 67% of the overall population will constitute of the targeted subgroup

Control of Alpha Risk:

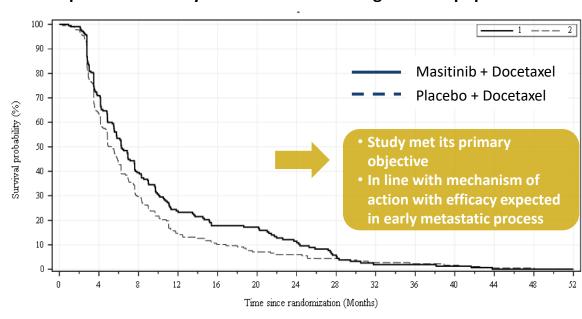
- Split with fallback procedure
- 4% in the targeted subgroup (ALP≤ 250 IU/ml). If positive then test at 5% on overall population


Metastatic Castrate Refractory Prostate Cancer (mCRPC)

There was no benefit in the overall population, yet the study met its primary analysis in the pre-specified targeted subgroup, demonstrating a statistically significant increase in PFS (p=0.0272)

No benefit on PFS in the Overall Population

Kaplan Meier Analysis of Overall PFS – Overall Population



Treatment group	Total	No. of Events	% censored	Median [96.1% CI]	Log Rank p-value	Hazard Ratio (95% CI)
Masitinib	355	313	11.83	5.7 [4.9;6.3]	0.2977	0.94
Placebo	357	335	6.16	5.4 [4.9;5.9]	0.2977	(0.81,1.10)

2 patients without study drug administration excluded from ITT population

21% risk reduction of time to progression in patients with ALP ≤ 250 IU/ml

Kaplan Meier Analysis of Overall PFS – Targeted sub-population

Treatment group	Total	No. of Events	% censored	Median [96.1% CI]	Log Rank p-value	Hazard Ratio (96.1% CI)
Masitinib	225	191	15.11	6.3 [5.6;7.6]	0.0272	0.79
Placebo	225	209	7.11	5.4 [4.6;6.0]	0.0272	(0.64,0.97)

Oncology

Strong market potential across indications

Indication	Phase of Development	Annual cost of drugs registered in similar indication (USD)	No US Patients	No EU Patients	Penetration	Market Opportunity US (M€)	Market Opportunity EU (M€)
Prostate Cancer	Positive phase 2/3 interim analysis	Xtandi (90,000)Jevtana (48,000)Zytiga (60,000)Keytruda (145,000)	50,000 ⁶	75,000 ⁶	33%	1,000 (based on a 60,000€ annual price)	1,500 (based on a 60,000€ annual price)
Pancreatic Cancer	Positive phase 2/3 interim analysis	Abraxane (240,000)Tarceva (27,000)Erlotinib (6,500)	[7,500 ; 15,000] ⁷	[12,500; 25,000] ⁷	25%	[125 ; 250] (based on a 60,000€ annual price)	[200 ; 375] (based on a 60,000€ annual price)

Source :

Population: https://data.worldbank.org/indicator/SP.POP.TOTL and https://ec.europa.eu/eurostat/web/population-demography-migration-projections/population-data/main-tables

6: National Cancer Institute, Prostate Cancer statistics
Scher 2015 – PLoSONE - Symptomatic mCRPC that has not been treated with or not progressed on chemotherapy

7: National Cancer Institute, Pancreatic Cancer statistics, 2015
Data from study AB07012
Balaban EP, et al. Locally Advanced Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract. 2017 Apr;13(4):265-269. doi: 10.1200/JOP.2016.017376.

Cytokine storm syndrome and lung injury may be avoided by inhibiting mast cell and macrophage activity

Innate immune Cells

Mast Cells

Implication in cytokine storm

- Mast cells contribute to inflammation by activating inflammatory compounds (IL-6, IL-1, TNFα) (Kritas 2020)
- Mast cell degranulation promotes lung lesions (Hu Y, 2012)
- Altered mast cell activity contribute to pulmonary disorders (Jin, 2018)

Macrophages

- Macrophage Activation Syndrome in COVID-19 (McGonagle D, 2020)
- Macrophages could contribute to viral spread, excessive inflammation and activation-induced lymphocytic cell death during COVID-19 infection (Park MD, 2020)

Evidence of masitinib activity

- Inhibition of mast cells activity through c-Kit, LYN, and FYN.
- Efficacy in patients with mastocytosis in a phase 3 (Lortholary Lancet 2017)
- Prevention against acute chest syndrome in an animal model of sickle cell disease (SCD).
- Efficacy in pneumology in severe persistent asthma.
- Masitinib inhibits macrophage colony-stimulating factor 1 receptor MCSF1R with an IC50=90nM.
- MCSF1 receptor is crucial for the differentiation and survival of the macrophages (Stanley ER, 2014)
- In asthma mouse model of airway inflammation,
 Masitinib inhibited of 40% the infiltration of macrophages

First Phase 2 evaluating masitinib anti-inflammatory activity in adult hospitalized patients with moderate and severe COVID-19 without limitation of age (i.e. patients above 80 enrolled)

Phase 2 design

Design: Double blind, placebo controlled, randomized 1:1, comparing masitinib titration up to 6.0 mg/kg/day in combination with IsoQuercetin + Best supportive care with placebo + Best supportive care

Main inclusion criteria: Adult ≥ 18 years of age at time of enrolment (no limitation of age) with moderate and severe COVID-19 (classification 3 to 5 on WHO 7-point ordinal scale)

Enrolment: 200 patients

Duration: 30 days

Primary endpoint: Clinical status of patients at day 15 using the

7-point ordinal scale.

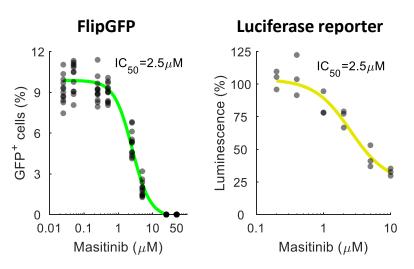
Key differentiating factors

The combination masitinib + IsoQuercetin differentiates from other strategies on key points

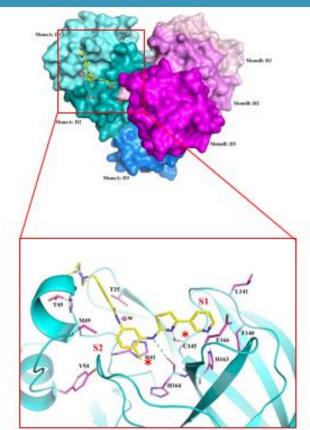
- Safety of masitinib and IsoQuercetin are well defined
- Targets the innate immune system cells upstream rather than the released interleukins downstream
- Can potentially prevent thrombosis (ICU and death)
- Can potentially treat the neurological symptoms
- Elderly people are the most exposed to death and masitinib and Isoquercetin combination is highly suited to treat aged people because of synergistic effect on senescent cells (enrolment of patients above 80 years old)

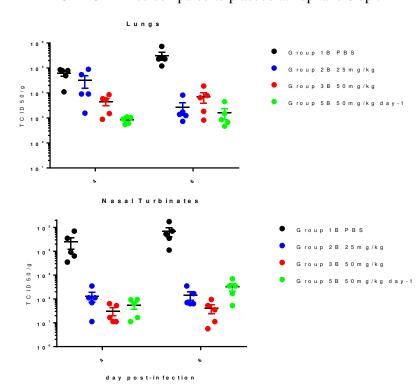
Status

Actively recruiting patients


Publication in *Science* shows that masitinib completely inhibited in multiple assays 3CLpro activity, the SARS-CoV-2 main protease necessary for its viral replication cycle

Masitinib inhibits SARS-CoV-2 main 3CL-protease


Masitinib directly binds to the active site of 3CLpro, thereby having a direct antiviral activity by blocking its enzymatic activity


Masitinib inhibits efficiently the replication of SARS-CoV-2 *in vivo*, decreasing by ~2-3 Logs the viral load

Viral titers in Lung and nasal turbinates in masitinib-treated Tg-K18-hACE2 mice compared to placebo at 4dpi and 6 dpi.

IC₅=2.5 μM in FlipGFP and luciferase reporter assays

Second Phase 2 evaluating masitinib anti-viral activity in ambulatory or hospitalized patients with symptomatic mild and moderate COVID-19

Phase 2 design

Design: Double-Blind, Placebo-Controlled, Multiple Doses, Comparative study

Main inclusion criteria:

- Symptomatic ambulatory adult with score 2 or 3 of the 10score WHO scale OR Hospitalized adult with score 4 or 5 of the 10-score WHO scale.
- Symptoms with onset ≤5 days
- Positive test for COVID-19 ≤72 hours prior to randomization

Enrolment: 78 patients

Duration: 10 days

Primary endpoint: Time-weighted average change from baseline in

viral shedding

Key differentiating factors

- Well established pharmacokinetic profile is at multiple doses, and is favourable for COVID-19 treatment, unlike peptidomimetic drugs targeting 3CL-protease, which are likely to be associated with bioavailability concerns.
- Synergistic effect between masitinib and Merck's Molnupiravir evidenced in vitro.
- Remains effective against all variant of concerns tested, including variant Delta.
- Well-established safety profile

Status

Blockbuster Opportunity

Indication	Phase of Development	Treatment cost of authorized drugs (USD)	No US Patients	No EU Patients	Penetration	Market Opportunity US (M€)	Market Opportunity EU (M€)
Hospitalized Patients with Moderate to Severe COVID-19	Phase 2 study to evaluate efficacy of masitinib combined with Isoquercetin in the moderate and severe forms COVID-19	 Eli Lilly monoclonal antibody cocktail (~5,000) Regeneron antibody cocktail (~2,500) 	600,000 ¹	900,0001	25%	[375 - 750] (based on treatment price between 2,500 and 5,000€)	[550 − 1,100] (based on treatment price between 2,500 and 5,000€)
Non-hospitalized and hospitalized patients with symptomatic Mild to Moderate COVID-19	Phase 2 study to evaluate the anti-viral efficacy of masitinib in the symptomatic mild to moderate forms of COVID- 19	Molnupiravir (~710 per treatment course)	1,100,000 ²	1,650,000 ²	25%	200 (based on treatment price of 700€)	300 (based on treatment price of 700€)

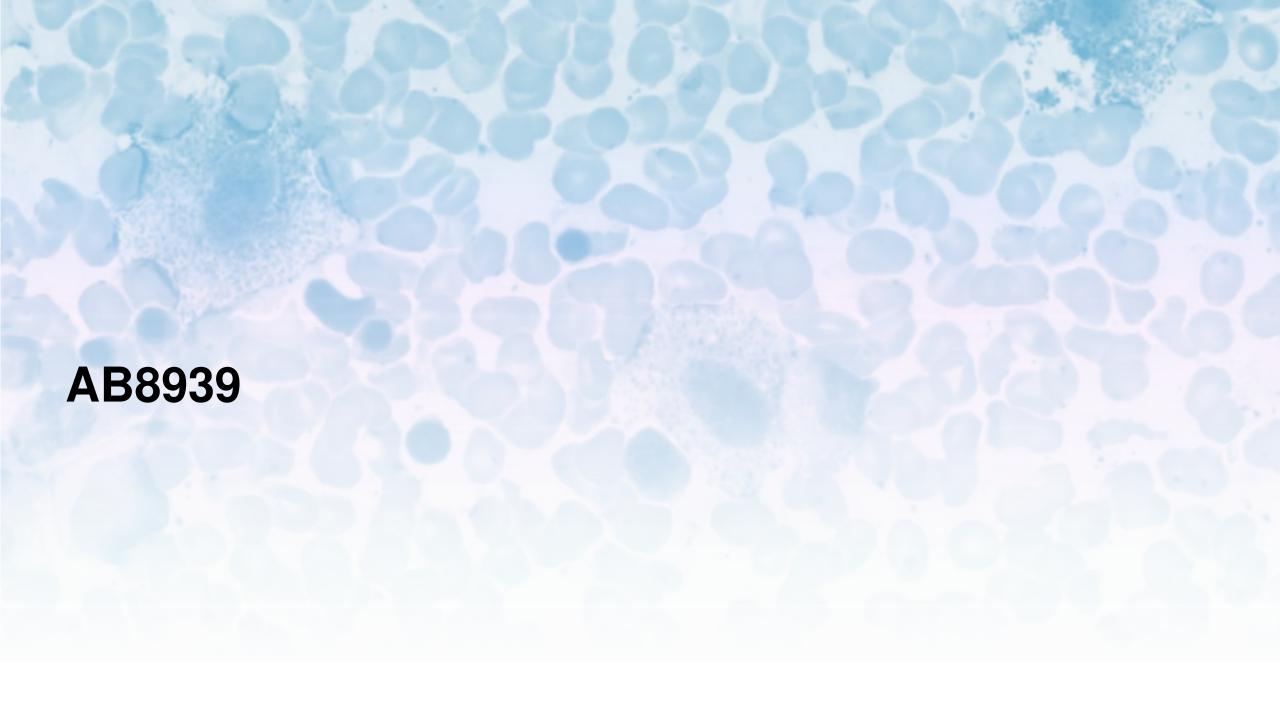
Source:

1:

- As of September 15, 2021, the number of current active cases in Europe and in the US amounts to approxiamtely 13,500,000 (source: Worldometer COVID-19 Data)
- Regarding the expected trend of Covid-19 active cases in the next 12 months in Europe and in the US, AB Science made the following assumptions:
 - o Between September 2021 and September 2022, decrease of the number of active cases in Europe and in the US, due to the massive vaccination campaign, to reach 5,000,000 by September 2022
 - o September 2022 and beyond: steady number of active cases in Europe and US, amounting to 5 million approximately
- In this indication, since masitinib targets moderate and severe forms of Covid-19, the number of eligible patients amounts to approximately 30% of all Covid-19 patients (source : COVID-19: Clinical features, Kenneth McIntosh, September 2021)
 2:
- Same assumptions have been considered for the expected number of active cases in Europe and in the US
- In this indication, since masitinib targets mild and moderate forms of Covid-19, the number of eligible patients amounts to approximately 55% of all Covid-19 patients (source: COVID-19: Clinical features, Kenneth McIntosh, September 2021)

Masitinib – Main Publications

Neurology

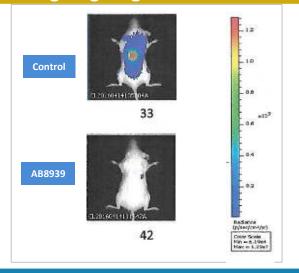

Program	Data	Publications
		• Trias et al, 2020 : Schwann Cells Orchestrate Peripheral Nerve Inflammation Through the Expression of CSF1, IL-34, and SCF in Amyotrophic Lateral Sclerosis
	Preclinical	• Trias et al, 2018 : Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS
ALS	rrecimical	• Trias et al, 2017: Evidence for mast cells contributing to neuromuscular pathology in an inherited model of ALS
		 Trias et al, 2016: Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis
	Phase 3	 Mora et al, 2021: Long-term survival analysis of masitinib in amyotrophic lateral sclerosis Mora et al, 2019: Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial
Alzheimer's	Phase 2	• Piette et al, 2011 : Masitinib as an adjunct therapy for mild-to-moderate Alzheimer's disease: a randomised, placebo-controlled phase 2 trial
Disease	Phase 2B/3	2021 Alzheimer's Association International Conference (AAIC)
MS progressive	Phase 2	• Vermersch et al, 2012 : Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study
MS progressive	Phase 2B/3	MSVirtual2020 joint ECTRIMS/ACTRIMS conference

Masitinib – Main Publications

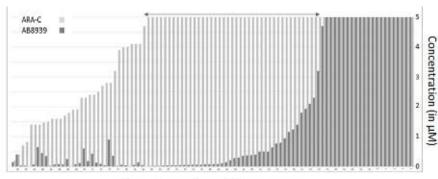
Immunology, oncology and viral diseases

Program	Data	Publications
	Phase 2	• Paul et al, 2010 : Masitinib for the treatment of systemic and cutaneous mastocytosis with handicap: a phase 2a study
Mastocytosis	Phase 3	 Lortholary et al, 2017 (Lancet): Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo- controlled, phase 3 study
	Preclinical	• Lee-fowler et al, 2012: The tyrosine kinase inhibitor masitinib blunts airway inflammation and improves associated lung mechanics in a feline model of chronic allergic asthma
Severe Asthma	Phase 2	 Humbert et al, 2009: Masitinib, a c-kit/PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid- dependent asthmatics
	Phase 3	EAACI Virtual 2020 Congress / ERS 2020 Congress
	Preclinical	 Humber et al, 2010 : Masitinib combined with standard gemcitabine chemotherapy: in vitro and in vivo studies in human pancreatic tumour cell lines and ectopic mouse model
Pancreatic Cancer	Phase 2	• Mitry et al, 2010: Safety and activity of masitinib in combination with gemcitabine in patients with advanced pancreatic cancer
	Phase 3	 Delplanque et al, 2015 : <u>A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer</u>
Metastatic Prostate Cancer	Phase 3	American Urological Association (AUA) 2021 Annual Meeting
Covid-19	Preclinical	• Drayman et al, 2021: Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2

AB8939

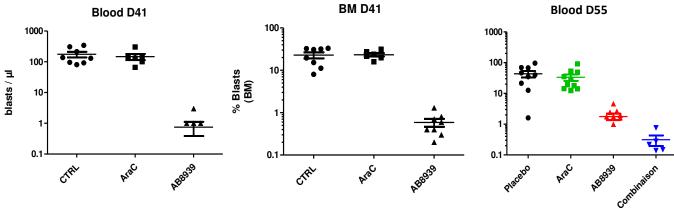


Novel Microtubule-destabilizing Agent for Acute Myeloid Leukemia


Key Differentiating factors

- Overcomes P-glycoprotein (Pgp) and myeloperoxidase (MPO) mediated resistance
- Active in Ara-C resistant/refractory AML
- Activity seen across all AML subtypes
- Alone or combined with Ara-C, improved survival and reduced disease burden relative to Ara-C
- Active in azacitidine resistant AML, with greatly reduced hematotoxicity
- Drug profile support development of AB8939 as a treatment of relapsed/refractory AML patients unable to receive intensive chemotherapy

Detection of AMKL26 PDX blasts in mice following single agent AB8939 treatment


Activity of AB8939 in Ara-C resistant/refractory AML patent blasts

Sample cells from AML patients

In proliferation assays, 66% of Ara-C-resistant blasts were sensitive to AB8939 and overall 69% of blasts had nanomolar sensitivity ($IC_{50} \le 500 \text{ nM}$)

Activity in Ara-C resistant PDX model

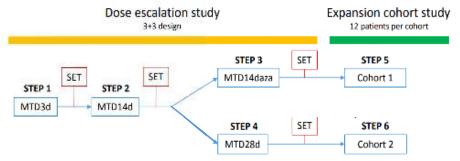
Blasts detection in blood and bone marrow (BM) of the PDX#5 mouse model at D41 post graft and at D55 post graft

Relapsed/ Refractory Acute Myeloid Leukemia (AML)

Phase 1/2 to assess the safety, pharmacokinetics, and efficacy of AB8939 in patients with Relapsed/Refractory AML

Phase 1/2 design

Design: Open-label, Uncontrolled, Multiple Doses, phase 1 study


Main inclusion criteria:

- Patients with documented diagnosis of AML
- Patients in 2nd or 3rd line of treatment (if eligible in 1st line to high dose chemotherapy) OR in 2nd line of treatment (if not not eligible to high dose chemotherapy)
- Patients with refractory melyodisplastic syndrome in 2nd or 3rd line of treatment, and with high risk at prognostic based on the IPSS-R scoring system.
- Patients not eligible to hematopoietic stem cell transplantation (HSCT) at the time of inclusion

Enrolment: 72 patients expected

Duration: up to 28 days

Phase 1/2 Objectives

Phase 1: Dose escalation

- Identify Maximum Tolerated Dose (MTD)
- Determine the pharmacokinetics profile
- Recommend dose of expansion cohort

Phase 2 : Expansion cohort

- Identify MTD of AB8939 + azacitidine at 14 days and AB8939 alone at 28 days
- Determine early efficacy

Status