





# Masitinib in primary progressive (PPMS) and non-active secondary progressive (nSPMS) multiple sclerosis: Results from phase 3 study AB07002

P. Vermersch<sup>1</sup>, O. Hermine<sup>2</sup> (on behalf of the AB07002 Study Group)

<sup>1</sup> University Lille, Inserm U1172, CHU Lille, FHU Imminent, Lille, France

<sup>2</sup> Imagine Institute, INSERM UMR 1163 / CNRS ERL 8254, Hôpital Necker, Paris, France



# Rationale: The innate immune system plays a critical role in progressive forms of MS

- Emerging evidence indicates that <u>Primary Progressive MS</u> and <u>non-active Secondary Progressive MS</u>
   (nSPMS) are driven in part by activity of the innate immune system, compartmentalized within the CNS
- Microglia and mast cells are types of innate immune cells present in the CNS that are strongly associated with the pathophysiology of MS
- Targeting innate immunity-related MS disease progression via modulation of mast cells and activated macrophage/microglia, may slow or prevent worsening of disability in progressive MS
- Masitinib, an oral tyrosine kinase inhibitor, selectively targets mast cell activity (c-Kit, LYN, FYN) and microglia activity (CSF1R). Masitinib has previously demonstrated neuroprotective action in preclinical models of various neurological conditions (amyotrophic lateral sclerosis and Alzheimer's disease [1–5]).

Ref: [1] Trias E, et al. Glia. 2020;68(6):1165-1181. [2] Trias E, et al. JCI Insight. 2018;3(19):e123249. [3] Trias E, et al. JCI Insight. 2017;2(20):e95934. [4] Trias E, et al. J Neuroinflammation. 2016;13(1):177. [5] Li T, et al. 1 Jan.2020:1–7.



# Preclinical and clinical proof-of-concept

- The potential of masitinib in MS was explored using a MOG-induced experimental allergic encephalomyelitis (EAE) model, with a significant reduction in disease observed at a clinically relevant dose [1].
- It is established that mast cells are necessary for the full manifestation of disease in this model [2].



Control (vehicle)
 → Masitinib (25 mg/kg)\*
 → Masitinib (12.5 mg/kg)\*

 Proof-of-concept that masitinib slows progressive forms of MS was also demonstrated in a small trial (n = 35) [1]

Ref: [1] Vermersch P, et al. BMC Neurol. 2012 Jun 12;12:36. [2] Secor VH, et al. J Exp Med 2000;191(5):813–821.



# Study AB07002 evaluated two masitinib doses in patients with PPMS and non-active SPMS

Double blind, placebo controlled, 2-parallel groups

- Two doses tested independently, each with its own placebo control group (i.e. 4-arm study)
  - 1. Masitinib 4.5 mg/kg/d versus its own placebo (300 patients randomization 2:1)
  - 2. Masitinib titration up to 6.0 mg/kg/d versus its own placebo (300 patients randomization 2:1)
- Statistically, study AB07002 is treated as two independent sub-studies under a common study identifier, with alpha control set at 5% for each dose

### Main inclusion criteria

- Patient with PPMS or nSPMS defined as:
  - No relapse, as measured by Expanded Disability Status Scale (EDSS) progression (not by imaging), within 2 years before inclusion according to the revised McDonald's criteria
  - EDSS score progression ≥ 1 point within 2 years before inclusion
- EDSS and age requirements
  - EDSS score of [2.0 to 6.0] inclusive at baseline
  - Age 18 to 75 years old



# Study AB07002 key efficacy endpoints

- Primary endpoint: Change from baseline in absolute EDSS value averaged over the 2-year study
  - Mean of all changes from baseline in EDSS, measured at 8 time points for each pt (every 12 weeks from W12–W96)
  - Primary analysis calculated using a GEE model (generalized estimating equation)
    - Allows for analysis of repeated measurements and adjusts for correlation across variables and across time
    - Gives the true treatment-effect over the 2 year study
  - The primary analysis <u>is not</u> a one-time ANCOVA test of the last EDSS value measured at week 96



# Study AB07002 key efficacy endpoints

- Sensitivity analysis of the primary endpoint
  - Change from baseline in ordinal EDSS score averaged over the 2-year study
    - Gives the probability of a patient having either more improvements in EDSS or fewer worsening EDSS scores with masitinib treatment relative to placebo
    - Change over time is measured using an ordinal score (+1 improvement; 0 stable; -1 worsening). Mean of all ordinal EDSS changes from baseline measured at 8 time points for each pt (every 12 weeks from W12–W96)
  - Jump-to-reference imputation method. Missing data related to discontinuation of masitinib treated patients due to lack of efficacy or a safety event were replaced by placebo imputed data.
  - Risk of EDSS progression (time-to-event) First onset and 3-month confirmed (Kaplan-Meier analysis)
  - Risk of progression to an EDSS score of 7.0 First onset and 3-month confirmed (Kaplan-Meier analysis)



# Baseline Characteristics - Masitinib 4.5 mg/kg/d

- **Patients were enrolled at an advanced stage of disease, reflecting a difficult-to-treat population**
- **Baseline characteristics were balanced between the treatment-arms**

|                               |               | Masitinib   | Placebo     |
|-------------------------------|---------------|-------------|-------------|
| Number randomized             |               | 200         | 101         |
| Sex [n (%)]                   | Female        | 111 (55.5)  | 54 (53.5)   |
|                               | Moon (SD)     | 10 9 (0 62) | 49.7        |
| Age (years)                   | iviean (SD)   | 49.8 (9.05) | (10.19)     |
|                               | Median        | 50.0        | 50.0        |
| Duration of first MS symptom  | Mean (SD)     | 14.0 (9.14) | 12.6 (7.96) |
| to randomization (years)      | Median        | 12.4        | 12.2        |
| EDSS score at baseline        | Mean (SD)     | 5.2 (1.07)  | 5.1 (1.06)  |
|                               | Median        | 5.5         | 5.5         |
| Distribution of baseline EDSS | 6             | 98 (49.0)   | 48 (47.5)   |
|                               | 5 and 5.5     | 41 (20.5)   | 21 (20.8)   |
|                               | Less than 5.5 | 61 (30.5)   | 32 (31.7)   |

- Patients were enrolled at an advanced stage of the disease
  - Close to 50% of patients with EDSS score 6.0
  - Median EDSS = 5.5
  - Mean and median age close to 50

# Primary Endpoint Results - Masitinib 4.5 mg/kg/d

Study AB07002 met its primary analysis, demonstrating a statistically significant reduction in disability progression on EDSS (p=0.0256)

Primary analysis - Mean of absolute changes from
 baseline in EDSS measured every 12 weeks up to week 96

Positive value of 'Means' indicates worsening Negative value of 'Means Difference' favors masitinib

| Treatment             | Ν   | Means  | Means Difference | p-value |
|-----------------------|-----|--------|------------------|---------|
| Primary Analysis      |     |        |                  |         |
| Masitinib 4.5 mg/kg/d | 199 | 0.001  | 0.007            | 0.0256  |
| Placebo               | 101 | 0.098  | -0.097           | 0.0250  |
| PPMS subgroup         |     |        |                  |         |
| Masitinib 4.5 mg/kg/d | 79  | 0.029  | 0 1 2 9          |         |
| Placebo               | 45  | 0.158  | -0.128           | _       |
| nSPMS subgroup        |     |        |                  | -       |
| Masitinib 4.5 mg/kg/d | 120 | -0.052 | 0 104            |         |
| Placebo               | 56  | 0.051  | -0.104           |         |

 Visualization of absolute changes from baseline in EDSS measured every 12 weeks up to week 96





LSM Change

## Primary Endpoint - Sensitivity Analyses

The positive primary outcome was corroborated by numerous sensitivity analyses

- This included the conservative multiple imputation technique known as 'Jump-to-Reference'
  - Primary analysis maintained a significant reduction in disability progression on EDSS (p=0.0367) even when missing data related to discontinuation of masitinib treated patients due to lack of efficacy or a safety event were replaced by placebo imputed data

### Mean of absolute changes from baseline in EDSS measured every 12 weeks up to week 96

| Treatment                 | Ν        | Means | Means Difference | p-value |
|---------------------------|----------|-------|------------------|---------|
| Jump-to-Reference Sensiti | vity Ana | lysis |                  |         |
| Masitinib 4.5 mg/kg/d     | 199      | 0.015 | 0.080            | 0 0267  |
| Placebo                   | 101      | 0.105 | -0.089           | 0.0307  |

Positive value of 'Means' indicates worsening. Negative value of 'Means Difference' favors masitinib



# Ordinal EDSS Results - Masitinib 4.5 mg/kg/d

Sensitivity analysis based on ordinal EDSS change showed a significant, 39% increased probability of having either more improvements in EDSS or fewer worsening EDSS scores with masitinib

- Instead of the change in absolute EDSS, change is measured with an ordinal score:
  - -1 if worsening in EDSS\*
  - +1 if improvement in EDSS+
  - 0 if EDSS is stable
- \* Worsening defined as change of at least +1 point from baseline if EDSS at baseline ≤5.5 and change of at least +0.5 points from baseline if EDSS at baseline >5.5

<sup>+</sup> Improvement defined as change of at least -1 point from baseline if EDSS at baseline  $\leq$ 5.5 and change of at least -0.5 points from baseline if EDSS at baseline > 5.5

| Treatment             | N   | Odds Ratio | p-value |
|-----------------------|-----|------------|---------|
| Masitinib 4.5 mg/kg/d | 199 | 0.61       | 0.0446  |
| Placebo               | 101 | 0.61       | 0.0446  |
|                       |     |            |         |
|                       |     |            |         |

- 0.61 odds ratio (masitinib vs placebo)
- Corresponds to a 39% increased probability with masitinib of having either more improvements in EDSS or fewer worsening EDSS scores



# Risk of EDSS progression - Masitinib 4.5 mg/kg/d

Masitinib reduced the risk of first disability progression by 42% and the risk of confirmed (3-month) disability progression by 37%



Kaplan-Meier analysis - cumulative probability of a <u>confirmed</u> EDSS progression



Significant 42% reduction in the risk of first disability progression over a timeframe of 96 weeks

PRESENTED AT

37% reduction in the risk of confirmed disability progression over a timeframe of 96 weeks

# Risk of progression to EDSS[7.0] - Masitinib 4.5 mg/kg/d

Masitinib also significantly reduced the risk of reaching an EDSS score of 7.0, corresponding to disability severe enough that the patient is restricted to a wheelchair

Kaplan-Meier analysis - cumulative probability of reaching an EDSS score of 7.0
 Masitinib

 Masitinib
 Placebo
 Hazard ratio 0.02
 p-value = 0.0093



Significant 98% reduction in the risk of reaching an EDSS score of 7.0 (first) over a timeframe of 96 weeks

PRESENTED AT

 Kaplan-Meier analysis - cumulative probability of a <u>confirmed</u> (3-month) EDSS score of 7.0



of 7.0 (confirmed) over a timeframe of 96 weeks

# Safety - Masitinib 4.5 mg/kg/d

### Safety was consistent with known masitinib profile with no new safety signals observed

- Safety dataset excluded 1 patient from ITT population because of no intake of study drug
- Adverse events (any grade) occurring most frequently for masitinib (MAS) compared with placebo (PBO) were: diarrhea, maculopapular rash, nausea/vomiting, peripheral edema, pruritus and various laboratory assessments

| events (AE) over the 96-week treatment period |                    |                   |  |
|-----------------------------------------------|--------------------|-------------------|--|
| Patients with ≥1 event                        | MAS (n=199)        | PBO (n=101)       |  |
| AE (any grade)                                | <b>94.5%</b> (188) | <b>87.1%</b> (88) |  |
| AE leading to death                           | <b>0%</b> (0)      | <b>2.0%</b> (2)   |  |
| Serious AE (non-fatal)                        | <b>21.1%</b> (42)  | <b>12.9%</b> (13) |  |

PRESENTED AT

### Safety summary of treatment-emergent adverse events (AE) over the 96-week treatment period

### Non-fatal serious adverse events occurring in ≥2 patients over the 96-week treatment period

| Patients with ≥1 event  | MAS (n=199)     | PBO (n=101)     | Δ[M–P] (%) |
|-------------------------|-----------------|-----------------|------------|
| Rash Maculo-Papular     | <b>1.5%</b> (3) | <b>0%</b> (0)   | 1.5%       |
| Erythema Multiforme     | <b>1.0%</b> (2) | <b>0%</b> (0)   | 1.0%       |
| GGT Increased           | <b>1.0%</b> (2) | <b>0%</b> (0)   | 1.0%       |
| Neutropenia             | <b>1.0%</b> (2) | <b>0%</b> (0)   | 1.0%       |
| PP Erythrodysesthesia   | <b>1.0%</b> (2) | <b>0%</b> (0)   | 1.0%       |
| Urinary Tract Infection | <b>1.0%</b> (2) | <b>1.0%</b> (1) | 0%         |
| MS Relapse              | <b>2.0%</b> (4) | <b>3.0%</b> (3) | -1.0%      |



# Masitinib 6.0 mg/kg/d - Primary Analysis

### Results from the second parallel group, with a titrated target masitinib dose of 6.0 mg/kg/d, did not show any significant difference between treatment-arms

- Numerically, masitinib 6.0 mg/kg/d titration change in EDSS was comparable to the masitinib 4.5 mg/kg/d result;
   therefore, only the masitinib 4.5 mg/kg/d dose will be pursued further in MS
- Placebo-arm of the masitinib 6.0 mg/kg/d titration cohort unusually showed an improvement relative to baseline after 96 weeks (conversely, the placebo comparator for the 4.5 mg/kg/d cohort was consistent with the literature and expected worsening in EDSS score over 96 weeks)
- No new safety signal was observed



## Conclusions

Masitinib, a first-in-class tyrosine kinase inhibitor targeting the innate immune system via inhibition of mast cell and microglia/macrophage activity, may provide a new treatment option for PPMS and non-active SPMS

- Study AB07002 demonstrated a sustained and significant benefit for masitinib (4.5 mg/kg/d) in EDSS change over a 2-year duration
- **\*** The 37% reduction in risk of confirmed disability progression is relevant from a medical standpoint

### Benefit was demonstrated across a broad population

- Little or no restriction on age, duration of disease or baseline disability
- Inclusive of both progressive MS phenotypes (PPMS and nSPMS)
- Irrespective of baseline active inflammation status

### Masitinib safety profile is suitable for long-term administration in this population



THANK YOU TO OUR PATIENTS AND THEIR FAMILIES, &

### TO ALL INVESTIGATORS OF STUDY AB07002

### **ALGERIA**

• Dr Hecham

### ARGENTINA

• Dr Deri

### **BOSNIA AND HERZEGOVINA**

• Dr Vranic

### **BULGARIA**

 Dr Shotekov Dr Milanov

### **CANADA**

- Dr Blevins
- Dr Girard
- Dr Lapierre

### FRANCE

- Dr Vermersch
- Dr Camu
- Dr Hautecoeur
- Dr Clavelou
- Dr Castelnovo

PRESENTED AT

### **GERMANY**

- Dr Tackenberg Dr Schwab
- Dr Schoell
- Dr Riefschneider
- Dr Oschmann
- Dr Ten Bergh
- Dr Marziniak Dr Klotz
- Dr Paul •
- Dr Maver

### GREECE

- Dr Kalochristianakis
- Dr Thomaidis
- Dr Orologas
- Dr Fakas

### Dr Mitsikostas

- Dr Grigoriadis
- Dr Tavernarakis

### HUNGARY

- Dr Satori
- Dr Mátvás

Study AB07002 was funded by AB Science, Paris, France

- Dr Kovács
- Dr Pálma Piros

### **INDIA**

- Dr Kumar
- Dr Radhakrishnan

### ISRAEL

• Dr Schifrin

### POLAND

- Dr Kulka
- Dr Maciejowski
- Dr Ratajczak
- Dr Dziki
- Dr Darda-Ledzion
- Dr Lisewski
- Dr Woicik
- Dr Debrowska-Woicik
- Dr Szczudlik
- Dr Banaszkiewicz
- Dr Bonek
- Dr Chahwan
- Dr Krzystanek
- Dr Czernichowska -Kotiuszko
- Dr Szczygieł
- Dr Tomaszewska
- Dr Zielonka

### ROMANIA

- Dr Manescu • Dr Deme
- Dr Szatmari
- Dr Chiru
- Dr Nica
- Dr Popescu

### **RUSSIAN FEDERATION**

- Dr Malkova Dr Popov
- Dr Fedyanin
- Dr Vorobyeva
- Dr Volkova

### **SLOVAKIA**

- Dr Turcani Dr Cimprichova
- Dr Gurcik
- Dr Krastev
- Dr Brozman
- Dr Lisa

Slides are the property of the author. Permission required for reuse.

- Dr Poljakova
- Dr Nyeky

- Dr Cuchran

- Dr Gouider
  - Dr Belal
  - Dr Mhiri

**SOUTH AFRICA** 

**SPAIN** 

• Dr Frih Aved

Dr Lekomtseva

UKRAINE

Dr Mhrissa

• Dr Dziak

• Dr Kobys

• Dr Cherkez

Dr Sanotskyi

• Dr Shkrobot

• Dr Kozvolkin

Dr Litovchenko

Dr Pashkovskvv

Dr Chudovvska

Dr Datskevych

**UNITED STATES** 

#MSVirtual2020

Dr Khavunka

Dr Rizvi

• Dr Katz

• Dr Singer

• Dr Braley

Dr Hughes

Dr Conway

Dr Moskovko

Dr Galusha

• Dr Chmvr

• Dr Moroz

• Dr Frost • Dr Heckmann

Dr Retief

Dr Ramio

Dr Brieva

• Dr Dziki

• Dr Aguerra

Dr Escartin

Dr Querol

Dr Prieto

• Dr González

• Dr Olascoaga

Dr Gascón

• Dr Ginés

• Dr Martin

Dr Martínez

Dr Ara Callizo

Dr Fermández

Dr Benammou

**TUNISIA** 

Dr Tello