Advances in Alzheimer Therapy (AAT) March 9-12, 2016

Masitinib for the treatment of Alzheimer's disease: Clinical and preclinical data

Olivier Hermine MD, PhD Hematology Department, Necker Hospital Centre National de référence des mastocytoses, Necker Hospital INSERM U 1163 and CNRS ERL 8654 Institut Imagine, Necker Hospital

Paris, France

ASSISTANCE

HÔPITAUX

Disclosure

Co-founder of AB science Scientific consultant Research grants

MAST CELLS AND DISEASES

MASTOCYTOSIS DEFINITION

- Mast cell accumulation in various organs (Skin, GI tract, Liver, Bone and Bone Marrow, etc)
- Myeloproliferative disorder; Aggressive vs indolent disease
- Association with hematological disorders
- Clinical heterogeneity (Infiltration vs Mediators release)

IDENTIFICATION OF ALL SYSTEMIC MANIFESTATIONS IN PATIENTS SUFFERING FROM MASTOCYTOSIS

- From 2004, 363 mastocytosis patients and 90 controls in France were asked to rate their overall disability (OPA score) and the severity of 38 individual symptoms.
- A specific questionnaire (AFIRMM V1), encompassing these 38 symptoms, has been created and validated.

PLoS ONE. 2008 May 28;3(5):e2266

Case-Control Cohort Study of Patients' Perceptions of Disability in Mastocytosis

Olivier Hermine^{1,2,3}*, Olivier Lortholary^{3,4}, Phillip S. Leventhal³, Adeline Catteau³, Frédérique Soppelsa³, Cedric Baude³, Annick Cohen-Akenine³, Fabienne Palmérini^{3,4,6}, Katia Hanssens^{3,4,6}, Ying Yang⁴, Hagay Sobol⁶, Sylvie Fraytag⁵, David Ghez^{1,2}, Felipe Suarez², Stéphane Barete^{1,7}, Philippe Casassus^{3,8}, Beatrice Sans⁹, Michel Arock¹⁰, Jean Pierre Kinet³, Patrice Dubreuil^{3,4,6}, Alain Moussy³

IDENTIFICATION OF ALL SYSTEMIC MANIFESTATIONS IN PATIENTS SUFFERING FROM MASTOCYTOSIS

Symptom	i.	Patients			<i>P</i> -value ^b		
	Any disability ^c	Severe or intolerable disability ^d	n	Any disability ^c	Severe or intolerable disability ^d	Any disability ^c	Severe or intolerable disability ^d
Psychological impact	9 (10%)	1 (1%)	363	261 (72%)	120 (33%)	<0.0001	<0.0001
Asthenia	34 (38%)	3 (3%)	362	296 (82%)	102 (28%)	<0.0001	<0.0001
Pruritus	25 (28%)	3 (3%)	363	299 (82%)	82 (23%)	<0.0001	<0.0001
Food allergy/intolerance	9 (10%)	0 (0%)	363	222 (61%)	97 (27%)	<0.0001	< 0.0001
Erythemateous crisis	17 (19%)	1 (1%)	363	293 (81%)	69 (19%)	<0.0001	< 0.0001
Muscle and joint pain, cramps	36 (40%)	3 (3%)	363	276 (76%)	71 (20%)	<0.0001	0.0002
Pollakiuria	58 (64%)	6 (7%)	362	263 (73%)	64 (18%)	0.12	0.0098
Drug allergy	16 (18%)	0 (0%)	363	205 (56%)	70 (19%)	<0.0001	<0.0001
Aerophagia/eructation	43 (48%)	1 (1%)	363	229 (63%)	62 (17%)	0.0080	<0.0001
Dyspnea/bronchoreactivity	15 (17%)	3 (3%)	362	154 (43%)	94 (26%)	< 0.0001	<0.0001
Headache	34 (38%)	4 (4%)	362	250 (69%)	48 (13%)	<0.0001	0.0190
Bone pain	16 (18%)	0 (0%)	363	196 (54%)	65 (18%)	<0.0001	<0.0001
Reduced sexual relations	11 (12%)	4 (4%)	362	132 (36%)	65 (18%)	<0.0001	0.0014
Epigastric pain	35 (39%)	2 (2%)	362	249 (69%)	40 (11%)	<0.0001	0.0100
Ocular discomfort	43 (48%)	1 (1%)	363	219 (60%)	55 (15%)	0.0309	0.0003
Memory loss	32 (36%)	0 (0%)	362	240 (66%)	34 (9%)	<0.0001	0.0025
Tinnitus	29 (32%)	1 (1%)	363	166 (46%)	47 (13%)	0.0205	0.0011

PLoS ONE. 2008 May 28;3(5):e2266

IDENTIFICATION OF PSYCHOPATHOLOGICAL MANIFESTATIONS IN PATIENTS SUFFERING FROM MASTOCYTOSIS

- Determine the prevalence and to describe features of depression in a large cohort of mastocytosis patients (n = 288)
- Use of 17 items Hamilton Depression Scale (Ham-D17)

PLoS ONE. 2011 October:6(10): e26375

Depression in Patients with Mastocytosis: Prevalence, Features and Effects of Masitinib Therapy

Daniela Silva Moura^{1,2}, Serge Sultan^{2,3}, Sophie Georgin-Lavialle^{1,4}, Nathalie Pillet⁵, François Montestruc⁵, Paul Gineste⁵, Stéphane Barete⁶, Gandhi Damaj⁷, Alain Moussy^{5,8}, Olivier Lortholary⁹, Olivier Hermine^{1,4,5,8}*

IDENTIFICATION OF PSYCHOPATHOLOGICAL MANIFESTATIONS IN PATIENTS SUFFERING FROM MASTOCYTOSIS

- 64% of Patients are depressed (Hamilton Score)
 - Moderate 56 %
 - Severe 10 %
- Characterisitics of the depression
 - Anxiety and depression
 - Depressed mood
 - Psychiatric and somatic anxiety
 - Impairement and weakness for social and professional interactions
 - Sleep disturbances

NO CORRELATION WITH COGNITIVE FUNCTIONS

EVALUATION OF COGNITIVE IMPAIRMENT IN PATIENTS SUFFERING FROM MASTOCYTOSIS

- Describe the prevalence and features of cognitive impairment in a large cohort of patients with this rare disease (n = 57)
- Explore the relations between memory impairment and depression
- Memory impairment evaluated using the 3(rd) edition of the Clinical Memory scale of Wechsler. Depression symptoms evaluated using the Hamilton Depression Rating Scale

PLoS One. 2012;7(6):e39468.

OPEN O ACCESS Freely available online

Evidence for Cognitive Impairment in Mastocytosis: Prevalence, Features and Correlations to Depression

Daniela Silva Moura^{1,2*}, Serge Sultan^{7,8}, Sophie Georgin-Lavialle^{1,3,4}, Stéphane Barete^{1,3,5}, Olivier Lortholary^{1,6}, Raphael Gaillard^{9,10}, Olivier Hermine^{1,3,11,12*}

EVALUATION OF COGNITIVE IMPAIRMENT IN PATIENTS SUFFERING FROM MASTOCYTOSIS

Cognitive dysfunctions in mastocytosis

Memory impairment is a symptom associated with Mastocytosis

unpaired t-test to compare depression scores of patients with and without cognitive impairment

Cognitive impaired patients are no more depressed than patients without cognitive impairment.

PLoS One. 2012;7(6):e39468.

MASTOCYTOSIS: BRAIN BLOOD PERFUSION

Hypoperfusion of the anterior Cingulum antérieur in 10 patients with depression and mastocytosis Vs. 18 patients with Mastocytosis but not depressed

Hyperperfusion of central grey nuclei : 11 patients with cognitive imapirement vs 33 controls

HYPOTHESIS

TRYPTOPHAN METABOLISM IS ALTERED IN MASTOCYTOSIS AND CORRELATES WITH PERCEIVED STRESS AND DEPRESSION, DEMONSTRATING MAST CELLS' INVOLVEMENT IN INFLAMMATION PATHWAYS LINKED TO DEPRESSION.

Georgin Laviale, Moura D et al Mol Psychiatry, 2016

MAST CELL ACTIVATION DISEASE

Mast cell activation disease: An underappreciated cause of neurologic and psychiatric symptoms and diseases

Lawrence B. Afrin^a, Dieter Pöhlau^b, Martin Raithel^c, Britta Haenisch^{d,e}, Franz L. Dumoulin^f, Juergen Homann^f, Uwe M. Mauer^g, Sabrina Harzer^h, Gerhard J. Molderings^{h,*}

SIMPLIFIED PATHWAYS OF HUMAN MC DIFFERENTIATION

MASITINIB: SELECTIVE TYROSINE KINASE INHIBITOR, INHIBITING MAST CELL SURVIVAL, DEGRANULATION AND MIGRATION VIA C-KIT INHIBITION

SUMMARY OF INHIBITORY EFFECTS OF MASITINIB

Target	IC ₅₀ [nM]	Kd [µM]
KIT wild-type	200	0.008
FYN	240	0.14
LYN	225	0.061
PDGFR-alpha	50	0.025
PDGFR-beta	110	0.008
CSF1R	90	0.008

MASITINIB DEMONSTRATED EFFICACY IN IMPROVING HANDICAPS ASSOCIATED WITH MASTOCYTOSIS

Phase 3 AB06006 – efficacy analysis - W8-W24 period

			Masitinib	Placebo	p-value	Odd ratio (Cl95)
Primary Analysis	4H75% Cumulative 75% response rate on the handicaps of pruritus or flushes or depression or fatigue	mITT/MDF	18.7%	7.4%	0.0076*	3.63
	3H75% Cumulative 75% response rate on the handicaps of pruritus or flushes or depression	mITT/MDF	24.7%	9.8%	0.0071	3.06
Secondary Analyses	2H75% Cumulative 75% response rate on the handicaps of pruritus or flushes	mITT/MDF	27.2%	10.7%	0.038	2.63
	Pruritus 75% Cumulative 75% response rate on the handicaps of pruritus	mITT/MDF	22.0%	7.3%	0.0322	3.13
	Flush 75% Cumulative 75% response rate on the handicaps of flush	mITT/MDF	39.9%	19.0%	NS	3.03
Other supportive analyses	Depression (Hamilton 75%) Cumulative 75% response rate on the handicaps of depression	mITT/MDF	18.6%	7.6%	NS	2.71
-	Fatigue (FIS 75%) Cumulative 75% response rate on the handicaps of fatigue	mITT/MDF	7.7%	3.2%	<5%	4.84

* With 10,000 rerandomization

MAST CELLS AND DISEASES

BRAIN BLOOD PERFUSION: SIMILARITY MASTOCYTOSIS AND ALZHEIMER'S DISEASE

Representative images from a control patient (Fig. A&B), an AD patient (Fig. C), and a mastocytosis patient (Fig. D), illustrating the impaired cognitive functions.

Control

Α

В

Alzheimer

Mastocytosis

Measurement of cerebral blood flow using arterial spin labeling MRI reveals similar hypoperfusion patterns between mastocytosis patients with impaired cognitive functions (memory and/or attention) and AD patients

BRAIN BLOOD PERFUSION: SIMILARITY MASTOCYTOSIS AND ALZHEIMER'S DISEASE

Representative images from mastocytosis patient comparing ASL-MRI before masitinib treatment (A) and after 6 month treatment (B)

Preliminary evidence suggests that masitinib may be able to reverse hypoperfusion in mastocytosis patients, with a concomitant improvement in cognitive functions.

PUTATIVE MECHANISM OF ACTION OF MASITINIB IN ALZHEIMER'S DISEASE

ANIMAL MODEL (APPXPS1DE9): COGNITIVE EVALUATION IN A CURATIVE SETTING

- Masitinib was evaluated for its effect on memory deficit in AD mice (Tg) versus using the Morris Water Maze (MWM) in a curative setting (mice aged 12-14 months)
- The MWM test evaluates hippocampal-dependent learning, including acquisition of spatial memory and long-term spatial memory, which is often affected in AD.

Blinded study

IN VIVO PROOF OF CONCEPT FOR MASITINIB'S EFFECT ON COGNITIVE FUNCTION IN AD HAS BEEN ESTABLISHED VIA A MOUSE MODEL (APPXPS1DE9) INDICATING IMPROVED SPATIAL MEMORY IN A CURATIVE SETTING

₩ T Veh (n=10)

T Masitinib (n=9)

Tg Masitinib (n=9)

- Genotype effect observed between wild-type (WT) and APPxPS1dE9 (Tg) mice treated with vehicle (Veh)

- Disappearance of genotype effect on mice treated with masitinib
- Masitinib treatment improves cognitive function, with spatial memory returning to normal levels

B Delatour et al ICM Paris

IN VIVO PROOF OF CONCEPT FOR MASITINIB'S EFFECT ON COGNITIVE FUNCTION IN AD HAS BEEN ESTABLISHED VIA A MOUSE MODEL (APPXPS1DE9) INDICATING IMPROVED SPATIAL MEMORY IN A CURATIVE SETTING

MWM Spatial Strategy

Percentage use of spatial strategy. ** p<0.001. * p<0.05. WT = wild-type mice. Tg = APPxPS1dE9 mice. M = masitinib treatment. Veh = vehicle treatment.

Group	p-value	
Tg Veh vs. Tg M	0.034	Treatment effect
Tg Veh vs. WT Veh	<0.001	Genotype effect
Tg M vs. WT M	0.038	Genotype effect
WT Veh vs. WT M	1	Negative control

- Percentage of spatial response increased through training for all mice except the Tg Veh group.
- Tg mice treated with masitinib showed significant improvement compared with controls (Veh).

B Delatour et al ICM Paris

IN VIVO PROOF OF CONCEPT FOR MASITINIB'S EFFECT ON AMYLOID LOAD IN AD HAS BEEN ESTABLISHED VIA A MOUSE MODEL (APPXPS1DE9) INDICATING REDUCED HIPPOCAMPAL AMYLOID LOADS IN A PREVENTIVE SETTING (MICE AGED 4-6 MONTHS)

Masitinib treatment decrease the amyloid charges (Congo red +) in the hippocampus of young APP/PS1dE9 mice

PROOF OF CONCEPT CLINCAL STUDY

Efficacy results in mild-to-moderate Alzheimer's disease (Phase 2 ; n=34 patients)

PROOF OF CONCEPT CLINCAL STUDY

Efficacy results in mild-to-moderate Alzheimer's disease (Phase 2 ; n=34 patients)

Alzheimers Res Ther. 2011 Apr 19;3(2):16. doi: 10.1186/alzrt75.

PROOF OF CONCEPT CLINCAL STUDY

Efficacy results in mild-to-moderate Alzheimer's disease (Phase 2 ; n=34 patients)

Masitinib generated efficacy in phase 2 on MMSE.

ON GOING PHASE 3 DESIGN

Study design	 Patients with mild to moderate Alzheimer's disease Blinded, placebo controlled 24 week treatment period 675 patients
Selection of patients	 Patient with dementia of Alzheimer's type, according to DSM-IV criteria probable Alzheimer' disease according to NINCDS-ADRDA criteria MMSE ≥ 12 and ≤ 25 at baseline minimum 6 month treatment at baseline with a stable dose of cholinesterase inhibitors and/or a stable dose of memantine
Clinical Endpoints	 Effect on ADCS-ADL from Week 8 to Week 24. Effect on ADAS-Cog from Week 8 to Week 24
Dosing	 3 doses 3 mg/kg/day masitinib 4.5 mg/kg/day masitinib 4.5 mg/kg/day with a switch to 6 mg/kg/day masitinib

ON GOING PHASE 3 PASSED FUTILITY TEST

Efficacy : DSMB performed a futility analysis with efficacy data

- Definition of futility test : test the inability of a clinical trial to achieve its efficacy objective
- Test performed on ADCS-ADL and ADAS-Cog
- Test performed after about one third of the patients were enrolled into the study and had reached the 24 week treatment duration period
- IDMC statement : Study Not Futile
- Safety : Independent Data and Safety Monitoring Board (DSMB) reviews every 6 months the safety data
 - On this basis, and before the futility analysis, the IDMC always recommended the continuation of the study

CONTACT ALZHEIMER STUDY PHASE 3

ohermine@gmail.com

Denys.zaitsev@ab-science.com

Psychiatric Department Saint Anne Paris R Gaillard <u>Centre de référence des mastocytoses - NEM</u> Olivier Hermine O Chandesris Christine Bodemer Olivier Lortholary S Barete G Damaj D Moura Sophie Georgin Laville

Department of radiology N Bodaert

Inserm U1127-CNRS UMR 7225 UPMC Institut de la Moelle et du Cerveau Tengfei Li Cécile Delarasse Benoit Delatour

Inserm U891 - Marseille Patrice Dubreuil Sébastien Letard Katia Hansen

<u>Alain Moussy</u> <u>Laurent Guy</u> <u>Colin Mansfield</u> Abstracts / Neurobiology of Aging 39 (2016) S1-S13

MASITINIB FOR THE TREATMENT OF ALZHEIMER'S DISEASE: CLINICAL AND PRECLINICAL DATA

Olivier Hermine. Institut IMAGINE, CNRS UMR 8147, Hôpital Necker, Paris, Paris.

E-mail: ohermine@gmail.com

Cognitive dysfunction is a hallmark symptom of Alzheimer's disease (AD). Mastocytosis (MCO), a mast cell (MC) related disease, is also associated with cognitive impairment. Around 40% of MCO patients (pts) present with impaired cognitive functions (memory and/or attention). We performed morphological and functional MRI in pts with MCO. Arterial spin labeling (ASL) MRI revealed an abnormal pattern of hypoperfusion in the brain when compared with healthy subjects, which correlated also with loss of cognitive functions. This pattern was similar to that observed in AD. In an open study, a few pts with MCO showed an improved blood flow in the brain that correlated with an increase in cognitive abilities following treatment with masitinib. Masitinib is an inhibitor of tyrosine kinases including c-Kit and Lyn, two kinases that may participate in the abnormal accumulation and activation of MCs in MCO. Hence, masitinib may also be efficient in AD. Proof of concept for masitinib in AD has been established via in vivo preclinical studies, with preliminary results from a APPxPS1dE9 mouse model of AD indicating improved spatial memory in a curative setting and reduced hippocampal amyloid loads in a preventive setting. In a phase 2 study, masitinib showed a consistent improvement in primary (ADAS-cog) and secondary (ADCS-ADL, MMSE) endpoints. Although the mechanism of masitinib in AD is expected to be multi-faceted (e.g. through its dual actions as an inhibitor of the MC-glia axis and of Fyn kinase activity in the context of AD pathology) it is hypothesized that one plausible mechanism of action is its ability to maintain or reinforce the integrity of the blood brain barrier (BBB) via inhibition of MC function; reducing the accumulation of blood-borne Aß peptides in the brain and pool of circulating pro-inflammatory mediators. These ALS-MRI data in MCO pts with cognitive impairment corroborate this hypothesis, demonstrating its pharmacological activity as a modulator of BBB permeability. Clinical development of masitinib in AD will be presented including details of the ongoing phase 3 trial, study futility analyses, additional preclinical data and mechanistic considerations.

Keywords. Alzheimer therapy, Blood brain barrier (BBB), Masitinib, Mast cells, Mastocytosis, Tyrosine kinase inhibitor