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Abstract: Cells of the immune system and the central nervous system are capable of interacting with each other. The 
former cell populations respond to infection, tissue injury and trauma by releasing substances capable of provoking an 
inflammatory reaction. Inflammation is now recognized as a key feature in nervous system pathologies such as chronic 
pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders such as anxiety/depression and 
schizophrenia. Neuroinflammation may also raise the brain’s sensitivity to stress, thereby effecting stress-related 
neuropsychiatric disorders like anxiety or depression. The cytokine network plays a large part in how immune system 
cells influence the central nervous system. Further, inflammation resulting from activation of innate immune system cells 
in the periphery can impact on central nervous system behaviors, such as depression and cognitive performance. In this 
review, we will present the reader with the current state of knowledge which implicates both microglia and mast cells, two 
of the principle innate immune cell populations, in neuroinflammation. Further, we shall make the case that dysregulation 
of microglia and mast cells may impact cognitive performance and, even more importantly, how their cell-cell interactions 
can work to not only promote but also amplify neuroinflammation. Finally, we will use this information to provide a 
starting point to propose therapeutic approaches based upon naturally-occurring lipid signaling molecules. 

Keywords: Alzheimer disease, astrocytes, cognition, lipid signaling molecules, mast cells, microglia, mood disorders, 
neuroinflammation. 

KEY POINTS 

• Inflammation is a key element in the pathobiology of 
neurodegenerative diseases and neuropsychiatric 
disorders such as anxiety/depression. 

• Immune system-derived non-neuronal cells (micro-
glia, mast cells) are key players in systemic and 
central neuroinflammtion. 

• Dysregulation of microglia and mast cells may impact 
cognitive performance. 

• Modulation of microglia and mast cells by 
endogenous lipid signaling molecules can offer a 
novel therapeutic strategy for neurocognitive decline 
associated with depression and Alzheimer disease. 

INTRODUCTION 

 The extensive communication that exists between the 
immune system and the central nervous system (CNS) 
represents one of the more fundamental advances in 
neuroscience [1]. Infection, tissue injury and trauma can lead 
to the release of substances which activate the innate 
immune system, leading to an inflammatory reaction. 
Inflammation is per se a protective response by the organism 
aimed at removing injurious stimuli and initiating the healing 
process. When protracted, however, inflammation surpasses 
the bounds of physiological control and becomes destructive. 
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Neuroinflammatory conditions are characterized by immune 
responses compromising components of the nervous system 
(Karolinska Institute, 2013, www.ki.se). Inflammation is 
now seen as a key element in the pathobiology of chronic 
pain, neurodegenerative diseases, stroke, spinal cord injury, 
neuropsychiatric disorders [2-6] and possibly autism 
spectrum disorder [7]. Neuro- and immune signal molecules 
(e.g. hormones, neurotransmitters/ peptides, cytokines) 
together with their receptors at part of the same superfamily 
which facilitates this mutual neuroimmune communication 
[1]. Neuroinflammation may also raise the brain’s sensitivity 
to stress. A recent study by Rivat and colleagues [8] 
demonstrated that chronic stress induces transient spinal 
neuroinflammation, triggering sensory hypersensitivity and 
long-lasting anxiety-induced hyperalgesia. Indeed, it is 
becoming increasingly clear that inflammation represents a 
common mechanism of disease - especially when one 
realizes the relationship that emerges between inflammation 
and the development of cardiovascular disease and diabetes 
[9]. 
 An ever-expanding body of evidence links inflammation 
with the risk of depression. People with inflammatory diseases 
such as multiple sclerosis (MS) [10], cardiovascular disease, 
rheumatoid arthritis [11] and psoriasis have elevated rates of 
depression. A comparison of non-depressed individuals to 
patients with major depression (irrespective of health status) 
shows the depressed group to exhibit essential features of 
inflammation, such as elevated peripheral blood and 
cerebrospinal fluid (CSF) levels of innate immune system-
derived inflammatory cytokines tumor necrosis factor alpha 
(TNF-α) and interleukin-6 (IL-6) [12] (the latter being one of 
the more reliable peripheral biomarkers in major depression), 
along with elevations in peripheral blood levels of acute phase 
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proteins, chemokines (e.g. monocyte chemoattractant protein 
(MCP)-1), adhesion molecules, and other inflammatory 
mediators [13]. Administration of inflammatory cytokines to 
healthy individuals leads to depression [14]. Interferon-alpha 
(IFNα) treatment of non-depressed hepatitis C patients 
consistently induces moderate to severe symptoms of 
depression in 20% to 50% of patients [15-17], along with 
increases in serum IL-6 levels and cerebrospinal fluid 
concentrations of IL-6 and MCP-1 [18]. Further, rats subjected 
to chronic stress showed elevated serum levels of IL-6 and 
TNF-α [19]. IL-6-deficient mice reportedly exhibit resistance 
to stress-induced development of depression-like behaviors 
[20], although central administration of IL-6 can elicit a 
depressive-like phenotype in mice [21]. The above observat-
ions taken on added importance when one considers that these 
cytokines can influence a plethora of pathophysiologic 
processes relevant to depression, including neurotransmitter 
metabolism, neuroendocrine function, synaptic plasticity, and 
regional brain activity [13, 14]. 
 The association of cognitive dysfunction with neuroinflam-
matory processes is not limited to depression, but can be found 
also in Alzheimer disease/dementia (Table 1). This review will 

focus on two key innate immune cell populations involved in 
neuroinflammation, namely microglia and mast cells, evidence 
pointing to their involvement in cognitive dysfunction 
associated with both depression and Alzheimer disease, the role 
that microglia-mast cell interactions may play in promoting 
neuroinflammation and, finally, how this knowledge can be 
leveraged to identify innovative therapeutic approaches for 
neuroinflammation and neurocognitive disorders. 

MICROGLIA, MAST CELLS AND NEUROCOGNITIVE 
(DYS)FUNCTION 

Depression 

 Inflammation is a complex and coordinated response of the 
body to a range of noxious stimuli. These can include not only 
infectious agents, but can also other external or internal cues, 
including components of damaged or diseased tissues. Medical 
conditions associated with chronic inflammatory and immuno-
logical abnormalities, such as obesity, diabetes, rheumatoid 
arthritis, and MS are risk factors for depression [22-24]. 
 It is important to understand that a systemic inflam-
matory challenge can provoke immune cell-mediated CNS 

Table 1. Neuroinflammatory – immune cell association with depression and neurocognitive disorder*. 
 

Depression Action References 

Microglia Traumatic brain injury is associated with a higher incidence of depression and microglial cell 
activation. 
Peripheral lipopolysaccharide (LPS) challenge provokes a more robust inflammatory cytokine 
response in primed microglia of traumatic brain injury mice and is associated with onset of 
depressive-like behavior. 
Microglia dysregulation is associated with psychiatric disease. 

[39-41] 

Mast Cells Patients with mastocytosis exhibit cognitive impairment and collelations to depression; masitinib, a 
protein tyrosine kinase inhibitor with a specific action on mast cells improves depression outcome. 

[57, 61, 155] 

LPS Peripherally administered LPS raises brain levels of pro-inflammatory cytokines and causes 
depression-like symptoms. 
 

[27-29] 

Pro-Inflammatory Cytokines Chronic exposure leads to depression. [14-17, 21, 156] 

Central Inflammation Excessive brain inflammatory cytokine response is associated with cognitive dysfunction and 
depressive-like behavior. 

[33-35] 

 Obesity Obesity-associated inflammatory priming renders vulnerable to immune-mediated depressive 
symptoms. 

[36] 

Neurocognitive Disorder* 

Microglia Systemic inflammation leads to their activation in the brain and neurodegenerative responses; 
Neuroinflammation mediated by activated microglial cytokines implicated in the pathogenesis of 
radiation-induced cognitive impairment. 

[95, 157] 

Mast Cells A chymotrypsin-like mast cell found in Alzheimer disease brain. [158] 

Aging Brain Microglia are primed to be activated and resistant to regulation, 
Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. 

[159, 160] 

Mild Peripheral Inflammation 
in Humans 

Gives rise to associated functional impairment in the form of reduced spatial memory performance; 
suggests a mechanism for the observed epidemiologic link between inflammation and risk of age-
related cognitive decline and progression of neurodegenerative disorders including Alzheimer 
disease. 

[161] 

Chronic Inflammation Accelerates age-related cognitive impairment. [162] 

 Neuroinflammation mediated by activated microglial cytokines has been implicated in the 
pathogenesis of radiation-induced cognitive impairment. 

[95] 

*In relation to Alzheimer disease. 
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inflammation - and depression. For example, chronic 
functional bowel syndrome is characterized by enhanced gut-
brain axis dysfunction, neuroinflammation, cognitive 
impairment, and vulnerability to dementia [25]. 
Lipopolysaccharide (LPS) (endotoxin derived from the cell 
walls of Gram-negative bacteria) stimulates pro-
inflammatory cytokine (IL-1β, TNF-α, IL-6) release from 
monocytes and macrophages [26] and triggers an 
intracellular inflammatory cascade which involves the stress-
activated and mitogen-activated protein kinases. Indeed, 
peripherally administered LPS raises brain levels of pro-
inflammatory cytokines and causes depression-like 
symptoms [27-29]. How are such signals conveyed from the 
periphery to the CNS? Upon activation, peripheral innate 
immune cells secret inflammatory cytokines that harness 
neural [30] and blood-brain barrier (BBB) pathways [31] to 
signal the CNS – thereby inducing CNS macrophages and 
microglia to produce the same cytokines [32]. Excessive 
brain inflammatory cytokine response is associated with 
cognitive dysfunction [33, 34] and depressive-like behavior 
[35]. 
 Prolonged exposure of mice to a western diet (consisting 
of palatable energy-dense food) altered LPS-induced 
depressive-like behavior and worsened hippocampal and 
hypothalamic pro-inflammatory cytokine expression and 
activity of the brain’s tryptophan-catabolizing enzyme 
indoleamine 2,3-dioxygenase [36], the latter being strongly 
associated with depression [35, 37]. Obesity is associated 
with a high prevalence of mood symptoms and cognitive 
dysfunctions, as well as peripheral low-grade inflammation 
and increased susceptibility to immune-mediated diseases 
[38]. 
 Microglia, the major (but not only) innate immune cell 
population in the CNS, are key players in the development of 
depression. For instance, traumatic brain injury (TBI) is 
associated with a higher incidence of depression [39]. 
Utilizing a fluid percussion model of TBI in mice, Fenn et 
al. [40] observed 30 days post-TBI a population of microglia 
expressing major histocompatibility complex II+ (also called 
human leukocyte antigen, a molecular signature of microglia 
activation), which serves as an antigen presenter to T helper 
cells. Peripheral LPS challenge provoked a more robust 
inflammatory cytokine response in primed microglia of TBI 
mice compared with controls; this late LPS-induced 
microglia reactivity post-TBI was associated with onset of 
depressive-like behavior [40]. See Frick et al. [41] for a 
recent review on microglial dysregulation in psychiatric 
disease. 
 Peripheral inflammation induces transmigration of 
interleukin-1β (IL-1β)-expressing neutrophils to the brain 
[42]. Mice treated with LPS developed despair-like and 
asocial behaviors, which were abolished by giving an anti-
polymorphonuclear antibody. Increasing endogenous levels 
of the energy-regulating hormone leptin during obesity 
exacerbated the behavioral changes [42]. These authors 
proposed a role for peripheral neutrophils in conveying 
inflammatory signals to the brain, as a function of the 
organism’s energy status. 
 The mast cell (Fig. 1) represents today an 
underappreciated peripheral immune signaling link to the 
brain where inflammation is concerned. Mast cells, which 

belong to the innate immune system and share similarities 
with circulating basophil granulocytes, derive from different 
bone marrow precursor cells [43]. Mast cells – in 
contradistinction to basophils – circulate as immature cells 
until reaching their chosen tissue site to settle. This behavior 
probably determines their particular characteristics. Mast 
cells are found in most tissues close to blood vessels, and 
near surfaces in contact with the environment [44]. They 
take part in innate host defense reactions, are located in 
peripheral tissues innervated by small diameter sensory 
nerve fibers and within the endoneural compartment of 
peripheral nerves, and in cerebral blood vessel meninges. 
During development mast cells enter the brain via 
penetrating blood vessels, with which they remain associated 
[45]. Mast cells are normally able to move through the BBB 
[46] and also traverse the blood–spinal cord barrier and BBB 
when the latter are compromised by disease. Mast cells are 
capable of phagocytosis and antigen presentation, and can 
modulate the adaptive immune response, as well (Box 1). 
 The spectrum of mast cell mediators is vast, 
encompassing biogenic amines, cytokines, enzymes, lipid 
metabolites, ATP, neuropeptides, growth factors and nitric 
oxide [47] (Table 2). Because mast cells are heterogeneous 
in nature, no single one makes all of these. Given their 
immune regulatory role, mast cells take part in IgE switching 
by B cells [48], and the release of chemoattractants that 
recruit eosinophils [49] and monocytes [50]. In disease states 
involving autoimmune demyelination, increased numbers of 
mast cells per se and also cells in a state of degranulation can 
be found within the CNS [51]. Activated mast cells can 
effect demyelination [52] and induce apoptotic death of 
oligodendrocytes [53]. It has been suggested that brain mast 
cells might provide a ‘bridge’ between the immune system 
and anxiety-like behavior [54]. 
 Are mast cells implicated in depression? Consider 
mastocytosis, which is characterized by mast cell 
accumulation in peripheral organs [55]. Patients with 
mastocytosis exhibit psychopathological manifestations such 
as cognitive impairment; depression appears to be the most 
common complaint among these patients and ranges from 
40% to 70% [56, 57] - as compared to about 7% in the 
general population [58]. Hermine et al. [56] reported a 
dissociation between the physical effects of mastocytosis and 
depression, suggesting that core aspects of depression are a 
fallout from the actual physical involvement of the disease 
[56]. A systemic brain involvement mediated by mast cell 
mediators could, in principle, account for this high 
prevalence of depression. Mast cells have been implicated in 
mechanisms related to the regulation of emotion [54]. A 
possible link between depression in mastocytosis and mast 
cell activation is suggested by preclinical/clinical studies 
showing that masitinib, a protein tyrosine kinase inhibitor 
with a specific action on mast cells was efficacious in 
treating cutaneous mastocytosis in dogs and in improving 
recovery from depression associated with mastocytosis [59-
61]. 
Neurocognitive Disorder and Alzheimer Disease 

 A decline in cognitive functions, including memory, is 
part of the aging process across mammalian species, 
including man. So-called 'cognitive aging' affects more than 
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50% of people over 60 years of age [62]. Age-related 
cognitive decline (or impairment) is more likely to be related 
to alterations in synaptic connectivity rather than neuronal 
cell loss [63] - an important distinguishing feature compared 
to pathological conditions such as Alzheimer disease (AD) 
[64] and other chronic neurodegenerative disorders. The 
distinction between elderly individuals that experience a 
reduction in cognitive ability that is not a consequence of 
neurodegenerative disease and amnesic mild cognitive 
impairment is important, as the latter is associated with 
markers of brain atrophy and often a prelude to AD. Today it 
is probably more correct to speak of 'Mild Neurocognitive 
Disorder' (Mild-NCD) rather than mild cognitive 
impairment, as defined in the Fifth edition of Diagnostic and 
Statistical Manual of Mental Disorders (DSM-V, American 
Psychiatric Association, May 2013). While DSM-IV  
 

(published 20 years ago) defined mild cognitive impairment 
as a clinical situation of cognitive decline in rather generic 
terms, DSM-V places emphasis on the relationship between 
the clinical syndrome of cognitive decline and underlying 
cellular/molecular mechanisms. Mild-NCD is an important 
risk factor for Major-NCD [65]. 
 Normal aging is associated also with a glial shift toward 
an activated phenotype, perhaps reflective of an increased 
inflammatory signaling. At face value this might be 
generally beneficial to the CNS, since it tends to minimize 
further injury while contributing to repair of damaged tissue 
which may be part of the aging process. In contrast, 
pathological gliosis and inflammation are now implicated in 
the severe cognitive dysfunction seen in neurodegenerative 
disease states such as AD, vascular dementia, TBI, chronic 
stress and direct inflammatory stimulation (e.g. LPS, as  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (1). The mast cell: a 'jack-of-all trades' immune cell. Depiction of the many mast cell activators and molecules elaborated by mast cells. 
It is important to keep in mind that mast cell activation involves both the rapid release of preformed agents like tumor necrosis factor (TNF), 
interleukin-4 (IL-4) and GM-CSF (granulocyte macrophage colony-stimulating factor) followed by a slower de novo synthesis of cytokines 
(TNF), chemokines, and growth factors like nerve growth factor. The cell adhesion molecule 1 (CADM1) on mast cells promotes interaction 
with dorsal root ganglion neurites by heterophilic binding to nectin-3 [163]. Intercellular contacts between T cells and antigen-presenting 
cells (such as mast cells) initiate T-cell signaling, whereby T-cell surface receptors recognize antigens bound to major histocompatibility 
complex molecules on the antigen-presenting cell. This process (which also engages adhesion receptors) creates a specialized junction 
between the two cell types – the so-called immunological synapse [164], which mediates delivery of effector molecules (via microvesicles) 
and intercellular signals across this cleft [164]. 
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Box 1. Mast cell flash card. 
 

Origin and Classification: 
• First described by Paul Ehrlich in 1878 on the basis of their 

unique staining characteristics and large cytoplasmic 
granules. 

• Very close to basophil granulocytes in blood; current 
evidence suggests that mast cells are generated by different 
precursor cells in the bone marrow. 

• Thought to originate from bone marrow precursors 
expressing CD34; a distinct subset of mast cells can also be 
induced upon host responses to inflammation. 

• The hematopoietic lineage development of tissue mast cells 
is unique compared to other myeloid-derived cells because it 
is early lineage progenitors, undetectable by histochemistry, 
that leave the bone marrow to enter the circulation. These 
immature lineage mast cells immediately undergo 
transendothelial recruitment into peripheral tissues wherein 
the appearance of secretory granules with a particular 
protease phenotype is regulated by the peripheral tissue. 

• Classified by their species-dependent protease constitution 
rather than location. 

• Present in most tissues in the vicinity of blood vessels, and 
are especially prominent near the boundaries between the 
body’s external environment and the internal milieu, such as 
the skin, mucosa of the lungs and digestive tract, as well as in 
the mouth, conjunctiva and nose. 

• Mast cells are also found within the nervous system, 
including meninges, brain parenchyma and nerve. 

Physiology: 
• Play a key role in innate and acquired immunity. 
• Upon activation rapidly release granules into the interstitium. 
• Degranulation is caused by direct injury (e.g. physical or 

chemical), cross-linking of high-affinity FcεR1 IgE receptors 
or by activated complement proteins. 

• Capable of elaborating a vast array of important cytokines 
and other inflammatory mediators. 

• Express multiple “pattern recognition receptors” thought to 
be involved in recognizing broad classes of pathogens. 

• Granules carry a variety of bioactive chemicals, 
proteoglycans, serine proteases, neuropeptides; can be 
transferred to adjacent cells of the immune system and 
neurons via transgranulation and their pseudopodia. 

Role in Disease: 
• Allergic reactions. 
• Anaphylactic shock. 
• Neuropathic and inflammatory pain. 
• Acute and chronic neurodegenerative disorders. 

[Adapted from: Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: 
partners in crime? Immunology 2013; 141(3): 314-27 (Box 1)].  
 
discussed earlier) [66-70]. Acute cognitive impairment (i.e., 
delirium) frequently results from infections in the absence of 
CNS involvement. Activation of the peripheral innate 
immune system induces microglia (together with macroglia 
and infiltrating leukocytes) to elaborate inflammatory 
cytokines that are responsible for behavioral deficits. 
Peripheral innate immune system activation in aged mice can 
exacerbate neuroinflammation and prolonged sickness 
behaviour [71], suggesting that dysregulation between the 
peripheral and central innate immune systems may have a 
role in the severe behavioral deficits that often occur in older 
adults with systemic infections. Drebrin A, a neuron-specific 
F-actin-binding protein found only in dendrites, is especially 
concentrated in dendritic spines receiving excitatory inputs. 

This protein is reportedly decreased in post-mortem temporal 
regions obtained from severe and mildly cognitively 
impaired patients [72]. A reduction in drebrin has been 
claimed to correlate with cognitive impairment in AD 
patients [72, 73]. 
 Microglia play a role in synaptic remodeling and 
plasticity in the healthy brain [74], and dynamic interactions 
between microglia and synaptic elements in the mature CNS 
have been revealed in imaging studies [75]. One mechanism 
by which microglia could interact with developing synapses 
is the classical complement cascade, whose components C1q 
and C3 in immature synapses are necessary for the 
developmental pruning of retinogeniculate synapses [76]. A 
follow-up study by Schafer et al. [77] showed that microglia 
engulf presynaptic inputs during peak retinogeniculate 
pruning, a process dependent upon neural activity and the 
microglia-specific complement receptor 3(CR3)/C3. 
Inflammatory neuropathologies are often associated with 
hypoxia caused by a reduced/altered neurovascular coupling 
and cerebral blood flow [78]. Hypoxia, acting in concert 
with neuroinflammation can worsen damage and provoke 
cognitive decline in such conditions [78]. In the peripheral 
immune system, inflammation and hypoxia share similar 
downstream pathways to produce an enhanced inflammatory 
reaction [79]. Building on these earlier findings, Zhang et al. 
[80] investigated whether hypoxia and an inflammatory 
stimulus act synergistically to modulate synaptic function in 
a microglial CR3-dependent mechanism. These authors 
showed combining hypoxia and an inflammatory stimulus 
(LPS) synergized to trigger long-term synaptic depression 
dependent on microglial CR3 activation, NADPH oxidase, 
and internalization of glutamatergic α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptors. This type of 
long-term depression was suggested to contribute to memory 
impairments and synaptic disruptions in neuroinflammation-
related brain disorders [80]. 
 Alzheimer disease, the principal cause of senile 
dementia, is characterized by the presence of extracellular 
senile plaques of amyloid β -peptide (Aβ) and intracellular 
neurofibrillary tangles of hyperphosphorylated tau protein in 
brain [81], along with signs of activated microglia and 
reactive astrocytes, often associated with Aβ deposits [82, 
83]. In AD, activated microglia can clear toxic Aβ 
assemblies and secreting neurotrophic factors [84]. 
Phagocytosis of aggregated Aβ by microglia may be 
beneficial; however, their protracted activation leads to 
release of synaptotoxic/neurotoxic pro-inflammatory 
cytokines, chemokines, and reactive oxygen/nitrogen species 
[82, 84]. In a transgenic mouse AD model inhibition of 
microglial activation protected hippocampal neurogenesis 
and improved cognitive deficits [85]. The amyloid 
hypothesis of AD posits that pathogenesis is initiated by 
amyloid deposition. Although initially formulated on the 
perceived deleterious effects of senile plaques, AD is now 
viewed by many as a disease of synaptic toxicity, in which 
soluble oligomeric forms of Aβ cause synapse loss and  
consequent cognitive disruption [86]. An experimental 
therapeutic (MW-151) which modulates glia biological 
responses in a mouse transgenic AD model attenuated 
synaptic dysfunction [87]. 
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 Cognitive decline has also been associated with surgery 
[88]. Postoperative cognitive dysfunction (POCD) involves a 
wide range of cognitive functions including working and 
long-term memory, information processing, attention and 
cognitive flexibility. Cognitive function often returns to 
normal within a matter of weeks, although in some patients 
cognitive decline remains [89]. Advanced age is the main 
risk factor for POCD [90], and inflammation may play a key 
role in the disease process [90]. Surgical trauma provokes a 
local inflammation which is paralleled by a rise in systemic 
inflammatory mediators [91], the latter influencing 
inflammatory processes in the brain, microglial cell 
activation and concurrent production of pro-inflammatory 
cytokines [91]. An association between neuroinflammation 
and impaired cognitive functioning could, conceivably, 
underlie the development of POCD [92, 93]. In line with the 
age factor for POCD, aging is tied in with an exacerbated 
inflammatory response [92, 93]. 
 Mild cognitive impairment is a documented consequence 
of whole brain radiation therapy that affects almost 50% of 
long-term brain tumor survivors [94]. It typically manifests 
more than 6 months after radiation exposure. Neuroinflam-
mation mediated by microglial-derived cytokines is 

implicated in the pathogenesis of radiation-induced cognitive 
impairment in animal models, which includes disruption of 
neurogenesis and activity-induced gene expression in the 
hippocampus. Inhibition of microglia-mediated neuroinflam-
mation mitigates radiation-induced cognitive impairment 
[95]. 
 A fascinating aspect of glial and mast cell involvement in 
neuroinflammation is the potential for these two cell 
populations to 'speak' with each other. This is perhaps not all 
that surprising, given their frequent proximity at sites of 
neuroinflammation. The literature in support of this view 
continues to mount, and will only be briefly summarized 
here (see [96] for a more detailed discussion). Toll-like 
receptors (TLRs) represent a major class of pathogen-
associated molecular patterns, which are molecules 
associated with groups of pathogens that are recognized by 
cells of the innate immune system. Ligand binding to 
TLR2/TLR4 on mast cells triggers cytokine release which 
recruits immune cells to the site(s) of injury, while 
microglial cell recruitment depends on signaling pathways 
involving TLR2/TLR4. Activation of mast cells up-regulates 
chemokine expression, including CCL5/RANTES; the latter 
are capable of inducing a pro-inflammatory profile in 

Table 2. Mast cell mediators. 
 

Biogenic Amines Biogenic Amines (Histamine (2-5 pg/Cell), Serotonin) 

Cytokines 

Interleukins 1-6 

Leukemia Inhibitory Factor 

Tumour Necrosis Factor-α 

Interferon-γ 

Transforming Growth Factor-β 

Granulocyte-Microphage Colony-Stimulating Factor 

Enzymes 

Acid Hydrolases 

Phospholipases 

Rat Mast-Cell Protease I and II 

Serine Proteases (Chymase, Trypase) 

Lipid Metabolites 

Prostaglandin D2 

Leukotriene C4 

Platelet-Activating Factor 

Thromboxane 

T and B Cell Ligands 

PD-L1 

OX40L 

CD30L 

CD40L 

CCl19 

Other Bioactive Molecules 

Neuropeptides (e.g. Vasoactive Intestinal Peptide, Substance P) 

Proteoglycans, Mainly Heparin (Active as an Anticoagulant) 

Nerve Growth Factor 

ATP 

Nitric Oxide 
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microglia. In turn, IL-6 and CCL5 released from microglia 
may affect mast cell expression of TLR2/TLR4. ATP 
released into the extracellular milieu following damage to 
cells/tissues is a potent microglial cell stimulant, and may act 
in an autocrine/paracrine fashion on mast cells. ATP released 
from one single mast cell (e.g. FcεR1 cross-linking, stress) 
can traverse several hundred micrometers to trigger a rise in 
Ca2+ in neighboring cells [97]. Further, ATP binding to 
purinergic P2 receptors may provoke IL-33 release from 
microglia already activated with pathogen-associated 
molecular patterns via TLRs [98]. IL-33 induces mast cell 
secretion of IL-6, IL-13 and CCL2 which, in turn, modulates 
microglial cell activity. Mast cell tryptase cleaves and 
activates microglial cell proteinase-activated receptor 2 
(leading to purinergic P2X4 receptor up-regulation) [99], 
while IL-6 and TNF-α from microglia can up-regulate mast 
cell expression of proteinase-activated receptor 2, thereby 
activating mast cells and TNF-α release [100]. The 
complement system appears to participate in this bi-
directional network, as well: the receptor for chemoattractant 
C5a is up-regulated on reactive astrocytes and microglia in 
inflamed CNS tissue [101]: Neuroinflammation causes C5a 
peptide release [102]; there is crosstalk between C5a and 
TLR4; C5a receptor is up-regulated in activated mast cells 
and is a strong mast cell chemoattractant signal towards C5a 
peptide. Recent evidence points also to lines of 
communication between mast cells and astrocytes 
(CD40L/CD40; binding of CD40 on antigen-presenting cells 
to CD40L on T-helper cells activates the former) [103, 104], 
and microglia and astrocytes (translocator protein, a marker 
of gliosis) [105]. For an in-depth discussion on mast cell – 
glia interactions, the reader is referred to a recent review on 
this topic [96]. 

RESOLUTION OF NEUROINFLAMMATION: DOES 
THE BEGINNING PROGRAM END? A THERAPEU-
TIC PERSPECTIVE 

 Natural mechanisms with the capacity for self-defense 
against inflammation are known to exist. A number of 
molecules take part in these endogenous protective 
mechanisms, being activated by tissue damage or stimulation 
of inflammatory responses. Chronic inflammatory processes 
may be counteracted by a program of resolution that includes 
the production of lipid mediators with the capacity to turn off 
inflammation [106]. Such inflammatory conditions may 
lower the levels or actions of these ‘resolving’ molecules 
[107]. Harnessing one or more of these lipid mediators can 
be one way “to commandeer nature’s own anti-inflammatory 
mechanisms and induce a “dominant” program of reso-
lution” [108]. Consider, for example, the N-acylethanol-
amines (NAEs). Among these fatty acid amides are the 
endocannabinoid N-arachidonoylethanolamine (anandamide) 
and congeners N-stearoylethanolamine, N-oleoylethanol-
amine and N-palmitoylethanolamine (PEA, or palmitoyl-
ethanolamide) [109]. PEA and (and other members) are 
formed from N-acylated phosphatidylethanolamine (NAPE) 
by diverse enzymatic pathways [110], involving a 
membrane-associated NAPE-phospholipase D which yields 
the respective NAE and phosphatidic acid [111] (Fig. 2). 
This enzyme converts N-palmitoyl-phosphatidyl-
ethanolamine into PEA. In the mammalian brain, NAEs are 

broken down into the corresponding fatty acid and 
ethanolamine by both: (i) fatty acid amide hydrolase 
(FAAH) in the endoplasmic reticulum [112]; (ii) lysosomal 
NAE-hydrolyzing acid amidase (NAAA) [113] (Fig. 2). 
NAAA is found mainly in macrophages, where it hydrolyses 
NAEs with less than 18 carbon atoms (e.g. PEA). FAAH, on 
the other hand hydrolyzes all these NAEs. 
 Endogenous lipid signaling molecules like PEA may 
function to maintain cellular homeostasis against external 
stressors leading, for example, to inflammation [114, 115]. 
Microglia and mast cells produce/hydrolyze PEA [116, 117], 
PEA moderates mast cell activation [118] and controls 
microglia behaviors [119, 120]. Tissue levels of PEA are 
raised in those brain areas involved in nociception and in 
spinal cord following induction of neuropathic pain [121], 
and in other situations associated with pain development 
[119, 122, 123]. Taken together, these observations posit that 
PEA maintains cellular homeostatic balance by mediating 
the resolution of inflammatory processes. By extension, one 
might ask if exogenous administration of PEA may be of 
therapeutic benefit. An ever-growing number of studies, both 
preclinical and clinical support this notion. The reader is 
referred to several recent reviews for a more detailed 
discussion of these findings [124, 125]. 
 Inhibiting PEA degradation by targeting NAAA may 
provide a complementary strategy to treat neuroinflam-
mation and its associated consequences such as neurocogn-
itive decline. A growing number of reports on selective 
NAAA inhibitors have appeared [126-134]; these inhibitors 
modulate responses induced by inflammatory stimuli in vivo 
and in vitro [126,132], and also elevate PEA levels in vitro 
[126]. One particular compound, 1-(2-biphenyl-4-yl)ethyl-
carbonyl pyrrolidine, reversibly and competitively inhibits 
NAAA, raises PEA levels in mouse macrophages stimulated 
with LPS, and reduces levels of inducible nitric oxide 
synthase and IL-6 mRNAs [131]. The newest NAAA 
inhibitors claim single-digit nanomolar intracellular activity 
(IC50 = 7 nM) on both the rat and human enzyme [132]. 
 Neurocognitive parameters and PEA effects can be 
modelled in a pharmacological mouse paradigm of AD, in 
which intracerebroventricular injection of Aβ25-35 peptide 
impaired spontaneous alternation performances, and spatial 
and non-spatial memory tasks [135]. Daily subcutaneous 
administration of PEA starting 3  h after injection of Aβ25-35, 
for 1 or 2 weeks reduced (10  mg/kg PEA) or prevented 
(30  mg/kg PEA) the amyloid-induced behavioral impair-
ments. However, PEA was ineffective in Aβ25-35-injected 
peroxisome proliferator-activated receptor α (PPARα) null 
mice. PEA counteracted reactive astrogliosis induced by Aβ 
[136]. In the mouse neurotoxin (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine; MPTP) model of Parkinson disease 
intraperitoneal administration of PEA reduced MPTP-
induced loss of tyrosine hydroxylase-labeled neurons in the 
substantia nigra pars compacta and microglial/astrocyte 
activation [137]; PEA also reversed MPTP-associated motor 
deficits. 
 There is a growing evidence in support of an association 
between oxidative stress and mild-NCD [138,139]. 
Oxidative stress is implicated also in neuropsychological 
disorders including depression/anxiety [140]. Flavonoids are 
polyphenolic phytochemicals endowed with potent anti-
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oxidant capacity, and well-described neuroprotective/ anti-
inflammatory actions [141, 142]. Amongst the family of 
flavonoids, luteolin (3',4',5,7-tetrahydroxyflavone) is repor-
ted to possess memory-improving [143] and anxiolytic [144] 
effects. The reported beneficial actions of PEA cannot be 
ascribed to an antioxidant effect of this NAE, as far as can be 
ascertained from the literature. Following another approach, 
studies have been carried out to assess the possibility that a 
combination of PEA and luteolin is more efficacious than 
either molecule alone. In a mouse model of anxiety/ 
depression induced by chronic corticosterone administration, 
systemic administration of co-ultramicronized PEA/leutolin 
(10:1 mass ratio) exerted a significant antidepressant effect 
at doses where PEA alone was ineffective [145]. This PEA/ 
luteolin composite also promoted hippocampal neurogenesis 
and dendritic spine maturation, elements which may impact 
cognition. The co-ultramicronized PEA/leutolin composite, 
applied to an ex vivo model of organotypic hippocampal 
slices stimulated with Aβ1-42 as an AD model normalized 
expression of inflammatory markers and limited neuronal 
cell death, where equivalent concentrations of either PEA or 
luteolin were ineffective [146]. Lastly, co-ultramicronized 
PEA/luteolin significantly improved motor function and 
histological alteration in mice with spinal cord injury; neither 
PEA nor luteolin alone, nor the single administration of PEA 
and luteolin were effective [147]. That cognitive decline is 
associated with gene expression changes in the brain, e.g. in 

AD [148] is reinforced by the recent discovery whereby 
Crtc1 (cyclic AMP-responsive element binding protein-
regulated transcription coactivator-1) regulates expression of 
multiple proteins involved in synaptic morphology, function, 
and plasticity, suggests that Crtc1 dysfunction underlies 
synapse (and hence, cognitive) dysfunction in neurological 
diseases like AD [149]. It will be interesting in future studies 
to see if PEA, alone or in concert with luteolin influences 
gene transcription associated with synaptic function, as well 
as the reported decrease in expression of synapse-related 
genes and loss of synapses in major depressive disorder 
[150]. 
 Signaling lipids such as eicosanoids, phosphoinositides 
and sphingolipids control a wide array of cellular processes. 
They include also the NAE family members anandamide, N- 
oleoylethanolamine, and PEA. These lipid mediators engage 
nuclear receptors, including PPARs, a subfamily of trans-
cription factors (α-, β/δ- and γ-isoforms). PPARα, which is 
relatively brain area-selective, modulates antioxidant respon-
ses, neurotransmission, neuroinflammation, neurogenesis, 
and proliferation/differentiation of glia. Lo Verme and colle-
agues in 2005 [151] were the first to show that PEA - like its 
analogue N-oleoylethanolamine - acts as an endogenous 
ligand for PPARα, thereby mediating the anti-inflammatory 
effects of PEA. PPARα is implicated in PEA neuroprotective 
and/or anti-inflammatory effects in experimental animal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (2). Palmitoylethanolamide synthesis and catabolism. A plasma membrane-associated N-acylated phosphatidylethanolamine-
phospholipase D (PLD) converts N-palmitoylphosphatidyl-ethanolamine (N-APE) into palmitoylethanolamide and phosphatidic acid. 
Palmitoylethanolamide is metabolized to palmitic acid and ethanolamine by fatty acid amide hydrolase (FAAH, which also breaks down 
other fatty acid amides) and the more selective N-acyl ethanolamine-hydrolyzing acid amidase (NAAA). Tissue levels of 
palmitoylethanolamide increase in stressful settings such as peripheral tissue inflammation, neuroinflammation and pain. See text for further 
details. [Reprinted from: Skaper SD, Facci L, Giusti P. Mast cells, glia and neuroinflammation: partners in crime? Immunology 2013; 
141(3): 314-27 (Fig. 2)]. 
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models of AD [135,136] and Parkinson disease [137]. PEA 
induced PPARα-dependent allopregnanolone synthesis in 
astrocytes [152], and pharmacological block of PPARα or its 
genetic deletion reduced PEA’s ability to neutralize Aβ1-42-
induced reactive gliosis [153]. To quote from Fidaleo et al. 
[154] in their review on PPARα and its lipid ligands: “This 
receptor and its endogenous ligands, including palmitoyl-
ethanolamide (PEA), are involved in physiological and 
pathological responses, such as satiety, memory consoli-
dation, and modulation of pain perception. The protective 
role of PPARα agonists in neurodegenerative diseases and 
in neuropsychiatric disorders makes manipulation of this 
pathway highly attractive as therapeutic strategy for neuro-
pathological conditions”. 

CONCLUSION 

 Although designed by nature as a cellular response to 
remove injurious stimuli and initiate the healing process, a 
protracted state of inflammation overruns the bounds of 
physiological control to become destructive. Inflammatory 
effectors, in large part cytokines, derive peripherally from 
non-neuronal cells of the innate (e.g. mast cells) and adaptive 
immune systems, as well as microglia (astrocytes) within the 
CNS. Microglia, the major innate immune cell population in 
the CNS dominate the inflammatory response during most 
chronic neurodegenerative diseases. In depression, microglia 
constitute an important player, as well. While adaptive 
pathways exist to transduce systemic inflammatory signals to 
the brain, their activation appears to be deleterious. Indeed, 
immune dysfunction outside the CNS (systemic inflammat-
ion) is now appreciated as part of CNS neuropathology. 
 As discussed in this review, clinical conditions which 
express depression and Mild-NCD are frequently associated to 
neuroinflammation, involving microglia, astrocytes and mast 
cells. Given that these non-neuronal cell types are able to 
communicate one with the other, it is not unreasonable to 
propose the principle of a 'morpho-functional unit' in which 
these three non-neuronal cell populations act in concert to 
promote a neuroinflammatory state impinging on the central 
neuron. This could be a consequence of inadequate non-
neuronal cell regulation (excessive and/or persistent endogenous 
and/or endogenous stimuli) and/or cellular inhibitory capacity. 
Clearly, a great deal remains to be learned concerning signaling 
mechanisms that regulate neuroinflammation and its 
relationship to cognitive performance. 
 Given that peripheral inflammation has emerged as a 
modulator of disease progression in depression and 
neurocognitive decline, one may ask whether or not it can be 
targetable in new therapeutic approaches, in particular by 
capitalizing on the body’s mechanisms for the resolution of 
inflammation. In this context, the capability of PEA to 
modulate protective responses during inflammation has 
given rise to the hypothesis that this signalling lipid may be 
part of a complex homeostatic system designed to control the 
basal threshold of inflammation (modulator of immuno-
neural homeostasis). This view is supported by observations 
that PEA production is up-regulated during inflammatory 
conditions. Indeed, emerging data that selective inhibition of 
PEA hydrolysis is anti-inflammatory provides more direct 
evidence for PEA involvement in the control of  
 

inflammation. Perhaps we are missing important therapeutic 
avenues by studying glia and mast cells separately from each 
other. In our view, future studies should explore a mast cell 
role in inflammatory diseases as a network, which will 
require a critical examination of specific tissue localization, 
function, and dynamic interaction with endogenous cells. 

REVIEW CRITERIA 

 A search for original articles published between 2004 and 
2014 and focusing on neuroinflammation and cognition was 
performed in MEDLINE and PubMed. The search terms 
used were “inflammation”, “neuroinflammation”, “micro-
glia”, “mast cells”, “glia”, “immune system”, “cognition”, 
“depression”, “Alzheimer disease”, “cytokines”, “neuro-
psychiatric disorders” and “palmitoylethanolamide”, alone 
and in combination. All articles identified were in English 
language and were full-text papers. We also searched the 
references’ lists of identified articles for additional relevant 
papers. 

LIST OF ABBREVIATIONS 

Aβ = Amyloid β-Peptide 
AD = Alzheimer Disease 
BBB = Blood-Brain Barrier 
CNS = Central Nervous System 
FAAH = Fatty Acid Amide Hydrolase 
IFNα = Interferon Alpha 
IL-1β = Interleukin-1β 
IL-6 = Interleukin-6 
LPS = Lipopolysaccharide 
Mild-NCD = 'Mild Neurocognitive Disorder 
MS = Multiple Sclerosis 
NAAA = N-Acyl Ethanolamine-Hydrolysing Acid  
   Amidase 
NAE = N-Acylethanolamines 
NAPE = N-Acylated Phosphatidylethanolamine 
PEA = N-Palmitoylethanolamine 
POCD = Postoperative Cognitive Dysfunction 
PPARα = Peroxisome Proliferator-Activated Receptor α 
TBI = Traumatic Brain Injury 
TLR = Toll-Like Receptor 
TNF-α = Tumor Necrosis Factor Alpha 
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