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Abstract

Background: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory
diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type
tyrosine kinase inhibitor that targets KIT.

Methodology/Principal Findings: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting
recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200640 nM and blocking stem cell factor-
induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150680 nM in Ba/F3 cells expressing human or
mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser
extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was
inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests
that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or
genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of
binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast
cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in
the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells
expressing a juxtamembrane KIT mutant.

Conclusions: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in
vivo, and has low toxicity.
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Introduction

The stem cell factor (SCF) receptor, KIT, also called CD117 or

c-KIT receptor, is a member of the type III receptor protein-

tyrosine kinase family (RTK) [1]. This family also includes Flt3,

the platelet-derived growth factor (PDGF) receptor, and the

receptor for macrophage colony-stimulating factor/colony-stimu-

lating factor-1 (c-Fms). SCF and KIT regulate erythropoiesis,

lymphopoiesis, megakaryopoiesis, gametogenesis, melanogenesis,

with SCF also serving as an important growth factor and activator

of mast cells and eosinophils [1,2]. It is known that SCF is up-

regulated in inflammatory conditions and therefore presents a

potential therapeutic target for the treatment of inflammatory

diseases [3]. In addition, gain-of-function mutations in KIT, that is

mutations that cause constitutive activation of the tyrosine kinase

(TK), have been implicated in a variety of neoplasms including,

gastrointestinal stromal tumours (GIST), mastocytosis, acute

leukaemias, melanomas and other cancers [4,5]. These mutations

are concentrated in the fifth extracellular domain (exons 8 and 9),

the juxtamembrane region (exon 11), and the kinase domain (exon

PLoS ONE | www.plosone.org 1 September 2009 | Volume 4 | Issue 9 | e7258



17) [6]. Also, autocrine or paracrine activation of KIT is thought

to be involved in ovarian neoplasms and small-cell lung cancer

[1,6].

In the last decade, several inhibitors of TK have been developed

for the treatment of cancer and other diseases. Imatinib mesylate

(Gleevec, STI-571; Novartis, Basel, Switzerland) was the first TK

inhibitor approved for clinical use [7]. This compound is a potent

inhibitor of the PDGF receptor (PDGFR) [8] and also BCR-ABL,

which causes chronic myelogenous leukaemia [9]. In addition,

imatinib inhibits KIT, c-Fms and Syk [10,11], and has been

approved for the treatment of patients with KIT-positive

nonresectable and/or malignant GIST. However, imatinib has a

number of short-comings, including the development of resistance

by most if not all patients with subsequent disease progression

[12], as well as resistance of the D816V mutant, which is frequently

associated with mastocytosis [6,13,14]. Moreover, imatinib may be

cardiotoxic due to its inhibition of ABL [15,16]. Therefore, novel

TK inhibitors with improved selectivity are being developed for

the treatment of diseases associated with KIT activation. Masitinib

(AB1010), a protein TK developed by AB Science, S.A. (France), is

one such new drug. The objective of this preclinical study was to

provide a primary characterisation of the in vitro and in vivo activity

of masitinib (mesylate salt) and to compare it against the

benchmark protein TK inhibitor imatinib.

Results

Masitinib is an inhibitor of recombinant human KIT
Activity of the synthetic TK inhibitor masitinib (mesylate salt;

Figure 1A) was assessed using a recombinant human wild-type

KIT protein corresponding to the intracellular domain (amino

acids 567–976). Using poly(Glu,Tyr 4:1) as a substrate, the

recombinant protein had a Km for ATP of 9.062.0 mM (data not

shown). Masitinib inhibited the recombinant enzyme with a half

inhibitory concentration (IC50) of 200640 nM (Table 1 and

Figure 1B). Kinetic studies in which ATP and masitinib were

covaried showed that at concentrations #500 nM masitinib is a

competitive inhibitor against ATP, but at higher concentrations

(.1 mM), it has a mixed mechanism of inhibition against ATP

(Figure 1C). Under identical assay conditions and with the same

enzyme, imatinib had an IC50 of 4706120 nM (see Supporting

Information; Table S1) and was a strictly competitive inhibitor

against ATP (Figure 1D).

Masitinib inhibits human and murine KIT in intact cells
Assessment of masitinib’s and imatinib’s ability to inhibit the

function and activity of KIT in cells was conducted using the

interleukin-3 (IL-3)-dependent cell line, Ba/F3 [17]. These cells

normally cannot survive in the absence of IL-3, but they

Figure 1. Masitinib inhibition of recombinant human KIT. (A) Structure of masitinib. The structure of masitinib is shown without its mesylate
counterion. (B) Dose-response of masitinib at 10 mM ATP. Tyrosine phosphorylation by KIT was assayed by measuring the incorporation of phosphate
into poly(Glu,Tyr 4:1). Lineweaver-Burk Plots for masitinib (C) and imatinib (D) with ATP as the varied substrate. Recombinant human KIT tyrosine
kinase assays were performed using an ELISA-based assay with poly(Glu,Tyr 4:1) as a substrate. In (C), the lines intersect to the left of the Y-axis,
indicating a mixed mechanism of inhibition for masitinib, whereas in (D), the lines intersect on the Y-axis, indicating a competitive mechanism of
inhibition for imatinib.
doi:10.1371/journal.pone.0007258.g001
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proliferate when transfected with transforming mutants of TKs or

when transfected with wild-type receptor TKs and treated with the

appropriate growth factor. In Ba/F3 cells expressing human wild-

type KIT, masitinib dose-dependently inhibited SCF-induced cell

proliferation with an IC50 of 150680 nM, (Table 1 and

Figure 2A). In contrast, the IC50 for inhibition of IL-3-stimulated

proliferation occurred at approximately .5 mM, with inhibition in

this case due to the ability of high concentrations of masitinib to

inhibit other TKs in the cells. Imatinib showed a similar inhibitory

pattern in this proliferation assay. Fluorescence-activated cell

sorting (FACS) analysis of Annexin V/7-amino-actinomycin D-

stained cells revealed that masitinib causes a dose-dependent

induction of apoptosis in SCF-treated Ba/F3 cells expressing wild-

type human KIT (Figure 2B). In contrast, masitinib-treated cells

were rescued from apoptosis when treated with IL-3. Qualitative

analyses by immunoprecipitation-western blotting experiments

revealed that masitinib caused a parallel inhibition of SCF-

stimulated tyrosine phosphorylation of human KIT, which was

again observed with imatinib (Figure 2C). Inhibition of the KIT

receptor was also associated with a parallel inhibition of KIT-

secondary messengers such as AKT and ERK activation, with

comparable dose effects observed between masitinib and imatinib

treatment.

Masitinib inhibits human mast cell degranulation,
cytokine production and migration of bone marrow cells

Assessment of masitinib’s and imatinib’s ability to inhibit the

FceRI-mediated degranulation of human cord-blood-derived mast

cells (CBMC) showed that both compounds produced a dose-

dependent inhibition b-hexosaminidase release by IgE-anti IgE

activated CBMC after 30 minutes of stimulation (Figure 2D left).

At concentrations of up to 10 mM, neither compound was able to

completely block the release of this mediator; however, although

not statistically different (p = 0.1), masitinib tended to be more

potent than imatinib. At concentrations of 10, 1.0 and 0.1 mM,

imatinib only slightly inhibited b-hexosaminidase release by 19, 8

and 2%, respectively, compared to an inhibition of 35, 18 and 7%,

respectively for masitinib. This effect was not due to cytotoxicity,

as evident from the incubation of CBMC with masitinib for up to

9 hours having no affect on cell viability. Also, a possible

confounding effect associated with the vehicle used to deliver

masitinib or imatinib dimethyl sulphoxide (DMSO) can be

excluded because the concentration used was below the threshold

of effect.

The effect of masitinib and imatinib on cytokine production of

IgE-anti IgE-activated CBMC was explored via ELISA assessment

of TNF-a release. As shown in the right panel of Figure 2D,

masitinib and imatinib dose-dependently inhibited the release of

TNF-a after 4 hours of stimulation. At concentrations of 10, 1.0

and 0.1 mM, masitinib inhibited TNF-a release by 68, 40 and

16%, respectively, whereas imatinib resulted in a weaker inhibition

(p = 0.1) of 45, 24 and 4%, respectively. Hence, neither compound

was able to completely block the release of this mediator, although

both more potently inhibited TNF-a release than b-hexosamin-

idase release.

The KIT receptor is involved in mast cell migration [18]. We

assessed the effect of masitinib and imatinib on murine bone

marrow mast cell (BMMC) migration in response to recombinant

mouse stem cell factor (rmSCF) stimulation (Figure 2E). After

4 hours of stimulation in the absence of either inhibitor, we

observed a migration of BMMCs in response to SCF compared to

unstimulated BMMCs (average migration of 8.7% versus 0.5% of

the initial concentration, respectively). Upon treatment with

1.0 mM of masitinib, migration of SCF-stimulated BMMCs was

Table 1. Effect of masitinib on the activity of protein kinases.

Protein kinase
Recombinant
enzyme IC50 (mM)

Cell-based
assay IC50 (mM)

Class III receptor tyrosine kinases

KIT wild-type 0.2060.04 0.1560.08

KIT V559D - 0.00360.0001

KIT D816V .10 5.062.0

KIT D814V (murine) - 3.060.1

KIT D27 (murine) - 0.00560.0003

PDGFRb 0.8060.12 0.0560.02

PDGFRa 0.5460.06 0.360.005

Flt3 .10 5.062.0

c-Fms 1.4860.54 1.060.03

Other receptor tyrosine kinases

VEGFR1 .10 -

VEGFR2 .10 -

Epidermal growth factor receptor .10 7.060.8

Fibroblast growth factor receptor 1 .10 7.061.9

Fibroblast growth factor receptor 3 .10 5.562.8

Insulin-like growth factor-I receptor .10* 10.060.67

c-Met .10 -

TrkB - 7.061.9

c-Ret .10 8.061.2

Alk - 9.060.18

Nonreceptor tyrosine kinases

ABL1 1.2060.34 2.860.8

Focal adhesion kinase .10 -

Proline-rich Tyrosine kinase
(FAK2/PYK2)

.10 -

Lyn B 0.5160.13 -

Src 1.8760.31 -

Hck 2.060.2 -

Jak1 - 8.061.4

Jak2 .10* 10.060.8

Jak3 - 10.060.5

Tyk2 - 9.060.8

Btk .10 -

Bmx .10 -

Syk .10 -

Fes .10

Serine/threonine kinases

Protein kinase C-a .10* -

Pim1 .10* -

Akt1 .10* -

Recombinant tyrosine kinase assays were performed using an ELISA-based
assay with poly(Glu,Tyr, 4:1) as the substrate. All protein kinases were human
versions except where noted. Cell-based assays were performed using Ba/F3
cells expressing the various enzymes, and cell proliferation was assessed using
WST-1. All concentrations were tested in duplicate (recombinant assays) or
triplicate (cell-based assays). Results are the means6standard deviations from
at least three independent experiments except where noted.
*Results are from a single experiment performed as part of a kinase screen by
Proqinase (Germany).

doi:10.1371/journal.pone.0007258.t001
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inhibited approximately79.6% (p = 0.029) relative to the control.

Imatinib similarly inhibited SCF-stimulated BMMC migration

(58.1% relative to control), although this inhibition was signifi-

cantly weaker than that of masitinib (p = 0.029).

Masitinib inhibits KIT gain-of-function mutants
Gain-of-function mutations in KIT are associated with

mastocytosis, GIST, and various human neoplasms [6]. In Ba/

F3 cells, masitinib dose-dependently inhibited cell proliferation

induced by the V559D mutant, commonly associated with GIST

(exon 11), with an IC50 of 3.060.1 nM (Figure 3A and Table 1).

Masitinib also caused a parallel inhibition of the tyrosine

phosphorylation of this mutant (Figure 3B). In the D27 mouse

mutant of KIT, which has a deletion of codons 547–555 in the

juxtamembrane domain (exon 11) known to cause constitutive

activation and ligand-independent cell proliferation [19], masitinib

dose-dependently inhibited D27 KIT-dependent proliferation of

Ba/F3 cells with an IC50 of 5.060.3 nM (Table 1 and Figure 3C).

Masitinib also caused a parallel reduction in its tyrosine

phosphorylation (Figure 3D). In contrast, masitinib only weakly

inhibited the proliferation of Ba/F3 cells expressing the D816V

mutant of KIT, which is associated with adult mastocytosis and

myeloproliferative disorder-acute myeloid leukaemia (exon 17),

with an IC50 of 5.062.0 mM (Figure 3A and Table 1). This result

was corroborated by assays using recombinant human KIT

intracellular domain with the D816V mutation (Table 1) and its

murine equivalent D814V mutant, for which masitinib had an IC50

of 3.060.1 mM (Figure 3C and Table 1).

To confirm the results in Ba/F3 cells, masitinib was tested in

various mastocytoma cell lines. In HMC-1a155 and FMA3 cells,

which carry KIT with mutations in the juxtamembrane domain

[20], the IC50 values were approximately 1061 nM and

3061.5 nM, respectively (Figure 4A). Immunoprecipitation-west-

ern blotting experiments on HMC-1a155 revealed parallel

Figure 2. Masitinib inhibition of KIT in intact cells. (A) Effect of masitinib and imatinib on SCF and IL-3-stimulated cell proliferation. Ba/F3 cells
expressing wild-type (WT) human (hKIT) were incubated for 48 hours with 0.1% conditioned medium from X63-IL-3 cells (IL-3) (filled symbols) or
250 ng/ml murine SCF in the presence of various concentrations of masitinib and imatinib. Cell proliferation was assessed by WST-1 colorimetric
assay. (B) Induction of apoptosis by masitinib in Ba/F3 cells expressing wild-type human KIT. Cells were incubated for 24 hours with stem cell factor
(SCF) or 0.1% conditioned medium from X63-IL-3 cells (IL-3) in the presence of various concentrations of masitinib. Apoptosis was assessed via
Annexin V-phycoerythrin (PE) and 7-amino-actinomycin D (7-AAD) staining, followed by fluorescence-activated cell sorting. A second dataset was
acquired for an incubation of 48 hours to verify completeness of the apoptosis process. (C) Effect of masitinib and imatinib on KIT tyrosine
phosphorylation in Ba/F3 cells (upper panels) and phosphorylation of the downstream targets AKT and ERK (lower panels). Ba/F3 cells expressing
wild-type human KIT (hKIT WT) were incubated for 5 minutes with (+) or without (-) 250 ng/ml murine SCF in the presence of various concentrations
of masitinib and imatinib. Tyrosine phosphorylation of KIT, AKT and ERK, were assessed by immunoprecipitation (IP) with the relevant antibody,
followed by western blotting (Blot) with anti-phosphotyrosine (pTyr) or anti-KIT molecular weight. Results are representative of at least three
independent experiments. MW = molecular weight markers. (D) Comparison of masitinib’s and imatinib’s ability to inhibit the FceRI-mediated
degranulation and cytokine production in cord blood derived mast cells (CBMC). Left: effect on the release of b-hexosaminidase by IgE-anti IgE
activated CBMC after 30 minutes of stimulation. Right: effect on cytokine production by IgE-anti IgE-activated CBMC after 4 hours of simulation via
ELISA assessment of TNF-a release. (E) The effect of masitinib and imatinib on the migration of murine BMMCs in response to rmSCF stimulation.
doi:10.1371/journal.pone.0007258.g002

Masitinib: A KIT Inhibitor

PLoS ONE | www.plosone.org 4 September 2009 | Volume 4 | Issue 9 | e7258



reductions in KIT tyrosine phosphorylation (Figure 4B). Finally,

the effect of masitinib on primary BMMCs from mice expressing

wild-type KIT was examined. Masitinib inhibited SCF-stimulated

cell proliferation (Figure 4C) and tyrosine phosphorylation of KIT

(Figure 4D) with an IC50 of 200650 nM, whereas the IC50 for IL-

3-stimulated proliferation in these cells was .10 mM (Figure 4C).

Selectivity of masitinib
Many TK inhibitors targeting KIT additionally inhibit other

members of the class III TK receptors, especially ABL and

PDGFRs [8,9,14,21]. A study of masitinib’s inhibitory action on a

selection of these TKs was therefore conducted (Figure 5A and

Table 1), along with a parallel examination of imatinib for direct

comparison of their IC50 values (see Supporting Information;

Table S1). In Ba/F3 cells expressing PDGFR-a, masitinib

inhibited PDGF-BB-stimulated proliferation and PDGFR-a tyro-

sine phosphorylation (Figure 5B) with an IC50 of 30065 nM. In

contrast, masitinib showed relatively weak inhibition of cell

proliferation in Ba/F3 cells expressing BCR-ABL, with an IC50

of 28006800 nM. The corresponding recombinant assays show

that masitinib inhibits the in vitro protein kinase activity of

PDGFR-a and b with IC50 values of 540660 nM and

8006120 nM, respectively, and to a lesser extent ABL1, with an

IC50 of 12006300 nM (Table 1). Comparatively, imatinib inhibits

the in vitro protein kinase activity of PDGFR-a, PDGFR-b and

ABL1 with IC50 values of 400 nM, 4406120 nM, and

2706130 nM, respectively (see Supporting Information; Table

S1). Against other class III RTK, masitinib was inactive against

Flt3 (.10 mM) but moderately inhibited c-Fms in both cell

proliferation and recombinant protein kinase assays (IC50 of

1.060.03 mM and 1.4860.54 mM, respectively). In addition,

strong inhibition of proliferation was observed in EOL1 cells

(IC50 of 0.260.1 nM; Figures 5C), a hypereosinophilic tumour cell

line expressing the FIP1L1-PDGFRa chimeric protein, which is

associated with chronic eosinophilic leukaemia. Similar inhibition

was observed for tyrosine phosphorylation of the FIP1L1-

PDGFRa chimeric protein (Figures 5D). This is a factor of 103

lower than that for the wild-type PDGFRa receptor.

To extend the range of protein kinases tested against masitinib,

various receptor TKs (VEGFR1 & 2; epidermal growth factor

Figure 3. Effect of masitinib on human and mouse KIT mutants. Effect of masitinib on the proliferation of Ba/F3 cells expressing wild-type
(WT) or mutant human (hKIT) (Fig. 3A) or murine (Fig. 3C) KIT (mKIT). Assessment of proliferation was as described for Fig. 2A. Effect of masitinib on
tyrosine phosphorylation of KIT mutants in Ba/F3 cells expressing the human V559D mutant (hKIT V559D) (Fig. 3B) or murine D27 mutant (mKIT D27)
(Fig. 3D). KIT tyrosine phosphorylation was assessed as described in Fig. 2B. IP = immunoprecipitation; Blot = western blot; MW = molecular weight
markers.
doi:10.1371/journal.pone.0007258.g003
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receptor; fibroblast growth factor receptor 1 & 2; insulin-like growth

factor-I receptor; c-Met; TrkB; and c-Ret) and nonreceptor TKs

(focal adhesion kinase; Lyn B; Src; Hck; Jak1; Jak2; Jak3; Tyk2; Btk;

Bmx; and Syk) were examined using both recombinant and cell-

based assays (Table 1). In general, masitinib was found to be either

inactive or a weak inhibitor of all these TKs, with the exception of

recombinant Lyn B, for which the IC50 was 5106130 nM. Finally,

masitinib was inactive against three recombinant serine/threonine

kinases (protein kinase C-a, Akt1, and Pim-1).

Molecular modelling of masitinib binding to KIT and ABL
Molecular modelling studies were performed to help determine

how masitinib binds selectively to KIT and to compare its mode of

binding to that of imatinib (Figure 6). Masitinib was docked into

the ATP-binding site of wild-type KIT and ABL using the

coordinates of human KIT and ABL in the inactive conformation.

Both kinases have been co-crystallised with imatinib (STI-571)

[22,23]. When docked into the KIT binding site, the aminothi-

azole of masitinib participates in a hydrogen bond with the side-

chain of the gatekeeper residue Thr670. The amide NH forms a

hydrogen bond to the side-chain of Glu640, and the meta-nitrogen

of the pyridine ring interacts with the backbone NH of Cys673

(Figure 6A). For the methylpiperazine group, an additional

hydrogen bond is observed between the protonated CH3-NH

and the backbone-CO of His790. The thiazole ring of masitinib

packs loosely between the aliphatic portions of the side-chains of

Ala621, Leu799, Cys809, and Phe811. Binding of masitinib to

ABL occurs in a similar manner, although small differences are

observed near the DFG motif (Phe810 in KIT and Phe382 in

ABL) (Figure 6C). There are close similarities between the modes

of KIT and ABL binding for imatinib and masitinib (Figures 6B

and 6D). Differences are apparent, however, in the ABL complex

(Figure 6D), where the polar pyrimidine ring of imatinib is

involved in a strong hydrogen bond network to three co-

crystallised water molecules bound to the DFG motif. In the

KIT-imatinib X-ray structure (Figure 6B), only one loosely bound

water molecule is observed in the corresponding region indicating

a more hydrophobic environment. This dissimilarity arises

because the thiazole ring of masitinib is more hydrophobic than

imatinib’s pyrimidine ring and is unable to mediate a hydrogen

bond to the water molecules. Consequently, preferred binding of

masitinib by KIT is observed.

Figure 4. Effect of masitinib on cell proliferation and KIT tyrosine phosphorylation in mastocytoma cell-lines and BMMC. (A) Effect of
masitinib on the proliferation of human (HMC1, HMC-1a155) (filled symbols) and murine (P815, FMA3) mastocytoma cell lines harboring KIT mutants.
Cells were incubated for 2 days with the indicated concentrations of masitinib. (B) western blotting analysis of HMC-1a155 tyrosine phosphorylation.
(C) Effect of masitinib in the proliferation of BMMCs. BMMCs were incubated for 2 days with 250 ng/ml of stem cell factor (SCF) or 0.1% conditioned
medium from X63-IL-3 cells (IL-3) with the indicated concentrations of masitinib. (D) Western blotting analysis of BMMC tyrosine phosphorylation. Cell
proliferation was assessed by WST-1 colorimetric assay. Tyrosine phosphorylation of the KIT protein from sensitive cell types in (A) and (C) was
analysed by immunoprecipitation (IP) and examined by western blotting (Blot) with antibodies to phosphotyrosine (anti-pTyr) or KIT (anti-Kit).
MW = molecular weight.
doi:10.1371/journal.pone.0007258.g004
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Masitinib inhibits tumour growth in vivo
A mouse model of tumour growth with D27-expressing Ba/F3

cells was used to investigate masitinib’s in vivo activity. Nude mice

were gamma-irradiated and implanted after 24 hours with D27-

expressing Ba/F3 cells by subcutaneous injection. When the

tumours had grown to an average volume of 400 mm3 (19 days

post implantation of tumour cells), mice were treated with

intraperitoneal injection of 30 mg/kg masitinib or placebo (i.e.

vehicle control) (n = 10 per group) twice daily for 25 days and

tumour volume was assessed every 5 days. At the start of

treatment, the mean tumour volumes were not statistically

different between groups (p = 0.617). Tumour growth stabilised

in mice treated with masitinib, whereas placebo treated mice had a

mean doubling time of 5 days, (Figure 7A). A significant difference

in average tumour volume was evident after 10 days of treatment

(day 29), the placebo group showing an approximate 4-fold

increase compared to the masitinib treated group (p = 0.016). The

administered dose of masitinib did not affect the total body weight

of the mice during the course of the study. Furthermore, as shown

in Figure 7B, masitinib increased the median survival time from

30.5 to 42 days (p,0.001) relative to the control population.

To examine the effect of orally administered masitinib on small

tumour volumes, mice with an average tumour volume of 40 mm3

(14 days post implantation of tumour cells) were assigned to one of

five groups: masitinib at 10, 30, or 45 mg/kg; placebo (vehicle

control); or untreated (n = 8 per group). At the start of treatment, the

mean tumour volumes were not statistically different between

groups (p = 0.236). Treatment was administered twice daily for 10

days with tumour size measured every 5 days during the treatment

period. Mice treated with masitinib showed a dose-dependent

inhibition of tumour growth, whereas the vehicle-treated population

showed continuous tumour growth with an estimated doubling time

of 1 day; corresponding to a tumour volume increase of 1200%

between days 14 to 25 (Figure 7C). Masitinib at 30 or 45 mg/kg

significantly reduced tumour growth following 11 days of treatment

compared to placebo, with average tumour volume increases of

355% (p = 0.05) and 154% (p = 0.005), respectively in the masitinib-

treated mice. However, the lower masitinib dose of 10 mg/kg did

not substantially alter tumour size relative to control (p = 0.940). For

one and two animals receiving masitinib at 30 and 45 mg/kg

respectively, there were no detectable tumours at day 25. These

doses of masitinib did not affect body weight gain of the mice during

the course of the study. Finally, we performed a separate experiment

to examine the effect of twice daily, orally administered masitinib at

100 mg/kg on mice having large D27 KIT-expressing tumours

(average tumour volume 500 mm3, 26 days post implantation of

Figure 5. Effect of masitinib on BCR-ABL and PDGFRa. (A) Effect of masitinib on the proliferation of Ba/F3 cells expressing human wild-type KIT
(hKIT WT), BCR-ABL, human wild-type PDGFRa (hPDGFRa WT). Cells were treated for 48 hours with PDGF-BB, IL-3, or SCF and in the presence of
various concentrations of masitinib. Cell growth was assessed by WST-1 colorimetric assay. (B) Ba/F3 cells expressing hPDGFRa were treated for 5
minutes with PDGF-BB and various concentrations of masitinib. Tyrosine phosphorylation of PDGFRa was analysed by immunoprecipitation (IP),
followed by western blotting (Blot) with an anti-phosphotyrosine (pTyr) antibody (upper panel) and an anti-PDGFRa antibody (lower panel). Results
are representative of two independent experiments. (C) Effect of masitinib on the proliferation of EOL1 cells, a hyperoesinophilic tumour cell line
expressing the FIP1L1-PDGFRa chimeric protein. (D) Western blotting analysis of EOL1 tyrosine phosphorylation. MW = molecular weight markers.
doi:10.1371/journal.pone.0007258.g005
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tumour cells). We found that tumour growth was blocked following

5 days of treatment with masitinib (data not shown). Upon

withdrawal of masitinib treatment after day 5, tumour growth was

once again evident.

Discussion

In the current set of experiments we have characterised the in

vitro and in vivo profiles of masitinib, a novel phenylaminothiazole-

type TK inhibitor. Of the protein kinases tested, the most sensitive

to masitinib were KIT and PDGFR, both of which had

submicromolar IC50 values. In addition, masitinib was a good

inhibitor of Lyn kinase (IC50 of 5106130 nM compared to

22006100 nM for imatinib, see Supporting Information; Table

S1), and to a lesser extent, fibroblast growth factor receptor 3. In

contrast to many other KIT inhibitors, such as imatinib, masitinib

is a relatively weak inhibitor of ABL (IC50 for recombinant

KIT = 1.260.34 mM for masitinib versus0.2760.13 mM for im-

atinib), and the relative selectivity for KIT versus ABL was 10-fold

higher for masitinib than for imatinib (ABL IC50/KIT IC50 = 6.0

for masitinib versus 0.6 for imatanib). Masitinib was shown to be

inactive against Flt3 and a relatively weak inhibitor of c-Fms,

which are two members of the class III RTKs. Masitinib was also

inactive against the vascular endothelial growth factor receptor, a

RTK often inhibited by KIT inhibitors [21,24,25]. In contrast,

other KIT inhibitors, including imatinib, dasatinib (Sprycel,

Bristol-Myers Squibb), and sunitinib (Sutent, Pfizer), also inhibit

several other protein kinases, especially other members of the type

III receptor TK family [21,26]. Thus, masitinib appears to be the

most specific inhibitor of KIT. Our molecular modelling studies

suggest that this greater selectivity of masitinib may be due to an

inability to form hydrogen bonds to three water molecules in the

active site of ABL, despite both compounds binding to the active

sites of KIT and ABL with similar conformations [22].

The lack of specificity associated with other KIT inhibitors may

lead to toxic side effects and recent studies suggest that imatinib

Figure 6. Docking of masitinib to human KIT and ABL: comparison with imatinib binding. (A and B) details of the binding of masitinib
(A; green; docking pose) and imatinib (B; orange; X-ray structure 1T46.pdb) to the KIT kinase domain. Masitinib and imatinib interact with the protein
via hydrogen bonds involving Glu640, Thr670, Cys673, and His790 and van der Waals interactions with Ala621, Val643, Leu644, Val668, Tyr672,
Leu799, Cys809, and Phe811. Cys809 and Phe811, which form a hydrophobic groove for the thiazole and pyrimidine ring, respectively, are shown as
space-filling structures. (C and D) Details of the binding of masitinib (C; green; docking pose) and imatinib (right site; orange; X-ray structure 1IEP.pdb)
to the ABL kinase domain. Masitinib and imatinib interact with the protein via hydrogen bonds involving Glu286, Thr315, Phe317, and His361 and van
der Waals interactions with Tyr252, Ala268, Val289, Met290, Ile313, Phe317, Leu370, and Phe382. In addition, the pyrimidine ring of imatinib is
involved in a hydrogen bond network to conserved water molecules around the DFG motif of ABL (shown as red balls).
doi:10.1371/journal.pone.0007258.g006
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may be cardiotoxic due to inhibition of ABL [15,16]. Indeed, the

cardiotoxicity of imatinib was reported with observation of left

ventricular dysfunction and even frank congestive heart failure in

patients without a prior history of heart disease [15]. In contrast,

the pharmacological profile of masitinib shows that it does not

target the kinases presumably involved in cardiotoxicity, e.g. SRC,

vascular endothelial growth factor receptors (VEGFR), endothelial

growth factor receptors (EGFR) and Abelson proto-oncogene

ABL. Thus, the risk of cardiotoxicity appears to be lower with

masitinib than with imatinib. In addition to cardiotoxicity,

imatinib has been shown to be genotoxic as indicated by a

positive chromosome aberration test in human lymphocytes in

Chinese Hamster Ovary (CHO) cells and in a bacterial reverse

mutation test [27]. Masitinib, in contrast, is not mutagenic in

bacterial reverse mutation tests using Salmonella typhimurium and

Escherichia coli and does not cause chromosome aberrations in

cultured human lymphocytes. Masitinib also does not cause

damage to chromosomes or the mitotic apparatus in mouse bone

marrow cells following two daily administrations at 437.5, 875, or

1750 mg/kg/day, and it is not mutagenic in a mouse lymphoma

assay (our unpublished results).

Importantly, masitinib was a potent inhibitor of several gain-of-

function KIT mutants, including V559D (exon 11), which is

associated with GIST [6], and a murine KIT mutant with a

deletion of nine amino acids in the juxtamembrane domain (D27

mutant; exon 11). This suggests that masitinib will be effective for

the treatment of diseases linked to activating mutations in KIT,

which includes mastocytosis, GIST, and canine mast cell tumours

[6]. Furthermore, exon 11 mutants, which appear to be the most

common type of KIT mutation in these diseases, were more

sensitive to masitinib (IC50 = 3 to 20 nM) than the wild-type

receptor (IC50 = 150 nM). In support of this, we found that

mastocytoma cell lines carrying KIT juxtamembrane mutants had

IC50 values for masitinib between 10 and 30 nM, whereas in

murine primary BMMCs expressing wild-type KIT, the IC50 for

masitinib was 200 nM. This higher sensitivity of juxtamembrane

mutants than the wild-type receptor has also been reported for

imatinib [28,29].

Masitinib was a potent inhibitor of mutant PDGFR a and b
receptors found in GIST and Chronic Myelomonocytic Leukae-

mia, respectively. Interestingly, masitinib is also very active against

the protein FIP1L1-PDGFRa, which is generated from an internal

deletion of chromosome 4 and is responsible for the induction of

hypereosinophilic syndrome [30]. Masitinib therefore may be

useful for the treatment of tumours involving mutant PDGF

receptors.

Our studies also showed that masitinib is active in vivo.

Intraperitoneal or oral administration of masitinib inhibited

tumour growth in mice with subcutaneous grafts of Ba/F3 cells

expressing the D27 KIT mutant. Furthermore, in an intraperito-

neal model, masitinib significantly enhanced survival with no

indication of general toxicity, as indicated by a lack of weight loss

at the administered doses. These results demonstrate that

masitinib is orally bioavailable and that it is effective at inhibiting

tumour growth in vivo. This agrees with our phase 3 study in dogs

showing that orally administered masitinib is safe and effective for

the treatment of nonresectable or recurrent grade 2 or 3

nonmetastatic mast cell tumours [31].

In conclusion, our results show that masitinib is a potent and

selective inhibitor of the KIT TK. Moreover, it appears to have

higher affinity and selectivity in vitro than other TK inhibitors and

does not inhibit kinases that are linked to toxic effects. Masitinib

also potently inhibits recombinant PDGFR, the intracellular

kinase Lyn, and, to a lesser extent, FGFR3. Additionally, masitinib

was active and orally bioavailable. Thus, we anticipate that

masitinib will be effective for the treatment of KIT and PDGFR-

dependent diseases, which include various cancer and inflamma-

tory diseases, and that it will have a better safety profile, especially

regarding cardiotoxicity, than other KIT inhibitors.

Materials and Methods

Drug product
Masitinib was identified using a medicinal chemical approach to

improve the selectivity of the phenylaminopyrimidine class of TK

inhibitors [8,9]. The chemical name is 4-(4-methylpiperazin-1-

ylmethyl)-N-[4-methyl-3-(4-pyridin-3ylthiazol-2-ylamino) phenyl]-

benzamide-mesylate methane sulfonic acid salt, and the chemical

formula is C28H30N6OS?CH4O3S (Figure 1A). Masitinib used in

these studies was synthesised by either AB Science, S.A. (France),

Archemis (Decines Charpieu, (France), Syngene (Bangalore, India)

or by Prestwick Chemical, Inc. (France); for detailed procedure

Figure 7. Masitinib inhibits tumour growth in vivo. Nude mice
were gamma-irradiated and after 24 hours, injected subcutaneously
with 1.56106 Ba/F3 cells expressing the murine D27 KIT mutant. (A and
B) Effect of intraperitoneal administered masitinib treatment on D27
KIT-expressing tumours, with an average pre-treatment tumour volume
of 400 mm3 (large tumour experiment). Mice were treated with 30 mg/
kg masitinib or a placebo (vehicle control) (n = 10 per group) twice daily
for 25 days by intraperitoneal injection. (A) Mean tumour volume
assessed every 5 days during the treatment. D19 corresponds to the
first day of treatment. (B) Kaplan-Meier survival plot. (C) Effect of oral
masitinib treatment on D27 KIT-expressing tumours, with an average
pre-treatment tumour volume of 40 mm3 (small tumour experiment).
Mice were treated twice daily for 11 days with masitinib administered
orally at 0 (controls), 10, 30, or 45 mg/kg. D14 corresponds to first day
of treatment.
doi:10.1371/journal.pone.0007258.g007
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refer to patent WO/2008/098949. Its chemical structure was

confirmed by nuclear magnetic resonance, mass spectrometry,

ultraviolet and infrared spectrometry, and elemental analysis.

Masitinib is practically insoluble in 0.1 M NaOH and n-hexane,

slightly soluble in ethanol and propylene glycol, soluble in water,

and freely soluble in 0.1 M HCl and dimethylsulfoxide. The

compound, a white powder, was dissolved as a 10 or 20 mM stock

solution in dimethylsulfoxide and stored at 280uC. Fresh dilutions

of masitinib were made for each experiment. The imatinib used in

this study was purchased from Sequoia Research (UK).

In vitro assays with recombinant protein kinases
Full details for the generation of recombinant human KIT

intracellular domain and other protein kinases (including Lyn,

platelet derived growth factor receptor b, epidermal growth factor

receptor, fibroblast growth factor receptor 1, Src, HCK, PYK,

FES, Btk, Bmx, c-Ret, c-Fms, Syk, and c-Met) are provided in the

Supplemental Methods (see Supporting Information; Methods S1).

Experiments on ABL1, Akt1, protein kinase C-a, insulin-like

growth factor receptor 1, and Pim1 were carried out by Proqinase

(Germany). All other recombinant protein kinases were performed

in-house using an enzyme-linked immunoassay; experimental

details are provided in the Supplemental Methods (see Supporting

Information; Methods S1).

In vitro assays in intact cells
Ba/F3 cells [28,32] were grown at 37uC in Roswell Park

Memorial Institute medium (RPMI) 10 (RPMI 1640 with L-

glutamine, supplemented with 100 units/ml penicillin, 100 mg/ml

streptomycin, and 10% heat-inactivated foetal calf serum). The

generation of Ba/F3 cells expressing wild-type or mutant (e.g.

D816V and V559D) murine and human KIT has been previously

described [19,32]. All cells were analysed and sorted by FACS for

cell surface expression of human KIT using MAB332, a mouse

anti-KIT monoclonal antibody (R&D Systems Europe, France),

and for murine KIT using ACK2, a rat anti-KIT monoclonal

antibody (Clinisciences SA, France). Cells expressing the consti-

tutively activated mutant forms of KIT mutant were selected

according to their ability to proliferate in the absence of IL-3.

For the assay of Ba/F3 cell proliferation, microtitre plates were

seeded with a total of 104 cells/well in 100 ml of RPMI 1640

medium with 10% foetal bovine serum at 37uC. These were

supplemented, or not, with either 0.1% conditioned medium from

X63-IL-3 cells or 250 ng/ml murine SCF. The murine SCF,

which activates KIT, was purified from the conditioned medium

of SCF-producing CHO cells (gift of S. Lyman, Immunex). Cells

were grown for 48 hours at 37uC and then incubated with 10 ml/

well of WST-1 reagent (Roche Applied Science, France) for

3 hours at 37uC. The amount of formazan dye formed was

quantified by its absorbance at 450 nm using a scanning multiwell

spectrophotometer (MultiSkan MS, Thermo-LabSystems, France).

A blank well without cells was used as a background control for the

spectrophotometer and all assays were performed in triplicate.

Apoptotic and dead cells were detected using annexin V-

phycoerythrin and 7-amino-actinomycin D via FACScan (Becton

Dickinson, USA), according to the manufacturer’s instructions

(BD Biosciences Pharmingen, France). Full details for the analysis

of tyrosine phosphorylation in intact cells are provided in the

Supplemental Methods. Western blotting was performed using

one of the following primary antibodies: for KIT, 1:1000 dilution

of a polyclonal rabbit anti-KIT antibody (Cell Signalling

Technology, France); for PDGFR-a 0.2 mg/ml anti-PDGFR-a
antibody sc-338 (Ozyme, France); for phosphotyrosine, using

1:1000 anti-phosphotyrosine antibody 4G10 (Cell Signalling

Technology). These were followed by 1:10,000 horseradish

peroxidase-conjugated anti-rabbit antibody (Jackson Laboratory,

USA) or 1:20,000 horseradish peroxidase-conjugated anti-mouse

antibody (Dako-France SAS, France). Immunoreactive bands

were detected using enhanced chemiluminescent reagents (Pierce,

USA).

Assessment of the effect of masitinib and imatinib on human

mast cell degranulation response and cytokine production (TNF-a
release), was performed on CBMC produced by long-term culture

of CD34+ progenitors purified from normal cord-blood, as

described previously by Royer et al [33] (see Supporting

Information; Methods S1). Cultured cells were harvested, washed

in complete IMDM medium, and incubated for 1 hour in various

concentrations of masitinib or imatinib. Assays of b-hexosamin-

idase release and TNF-a release were made by stimulating the

CBMC with 1 mg/ml of goat anti-human IgE (Vector Laborato-

ries) for 30 minutes or 4 hours, respectively. b-hexosaminidase was

measured in the supernatant and in the sonicated cell pellets and

its net release calculated [34]. For TNF-a determination, the cell-

free supernatants were collected by centrifugation and frozen at

280uC until determination of mediator content by the use of a

specific ELISA kit according to manufacturer’s instructions

(Coulter, France). All assays were performed in duplicate and

counts were repeated twice for each well. Results were expressed

in percentage of inhibition of b-hexosaminidase release and of

TNF-a release relative to the stimulated untreated CBMC, (i.e.

100% of stimulation).

Migration of murine BMMCs was evaluated using a transwell

migration assay [35]. Briefly, 2.56105 unstarved mast cells in

100 mL of chemotaxis buffer (RPMI 1640, 0.5% bovine serum

albumin [BSA], 1% antibiotics) were loaded onto each transwell

filter (8 mm pore, 24-well cell clusters; Becton Dickinson, USA).

Filters were then placed in wells containing 600 mL of chemotaxis

buffer supplemented with or without 10 ng/mL of rmSCF, for

stimulated or unstimulated BMMCs, respectively. After 4 hours

incubation at 37uC in 5% CO2, cells from the bottom chamber

were resuspended and counted using a FACS Scan over 20

seconds. All assays were performed in triplicate and counts were

repeated twice for each well. For tyrosine kinase inhibitor

treatment, 16107 mast cells were pretreated for 1.5 hours at

37uC in complete medium (OPTI MEM, 10% foetal calf serum

(FCS), 1% antibiotics and 2-mercaptoethanol 561025 M, 10 ng/

ml rIL3) either with 1 mM of inhibitor or an equivalent volume of

DMSO.

Molecular modelling
X-ray coordinates of the STI571/ABL (1IEP.pdb) and STI571/

KIT (1T46.pdb) X-ray structures were taken from the Protein

Databank and used in combination with our in-house docking

program, ParaDocks, and the X-Score of Wang et al. [36] to dock

masitinib into ABL and KIT. Figures were prepared with PyMOL

version 1.00 (DeLano Scientific).

In vivo assays with Ba/F3 D27 tumour model
Female MBRI Nu/Nu mice (7 weeks old) (Janvier, France) were

housed under specific pathogen-free conditions at 2061uC with a

12 hours light/12 hours dark cycle and ad libitum access to food

and filtered water. The mice were allowed to acclimatise to the

study conditions for 10 to 20 days prior to experiments. All animal

experiments were performed according to Centre national de la

recherche scientifique (CNRS) ethical guidelines of animal

experimentation [37]. The animal care unit SCEA (Institut

Gustave Roussy, Villejuif, France) is authorised by the French

Ministries of Agriculture and Research (Agreement Nu C94-116).
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The D27-expressing Ba/F3 cells were grown in RPMI 1640

medium supplemented with glutamax-1 (Gibco BRL, USA) and

10% foetal bovine serum (Gibco BRL, USA) at 37uC in a

humidified atmosphere containing 5% CO2. The cells were

centrifuged and resuspended at 56106 or 7.56106 cells/ml in

phosphate-buffered saline. Mice were treated with 5 Gy of gamma

radiation and after 24 hours they were injected in the right flank

with 1.56106 D27 Ba/F3 cells. When tumour growth had reached

the desired size, mice were allocated into treatment groups

ensuring that there was no statistical difference between each

group’s mean body weight and tumour volume. For all animals,

body weight was measured on the day of injection and every 5

days thereafter, with the tumour’s size measured via callipers every

5 days during the treatment period for estimation of tumour

volume. During the predose period and for 2 weeks post-

treatment, the animals were checked for mortality or signs of

morbidity once a day, increasing to twice a day checks during the

treatment period.

Statistical analysis
Assays for the in vitro effect of masitinib on the activity of protein

kinases were performed as three independent experiments (each in

duplicate), with results presented using descriptive statistics.

Masitinib’s effect on tumour growth was expressed in terms of

estimated tumour volume = [length6width2]/2. Survival in the in

vivo mouse studies was assessed by Kaplan-Meier analysis using

GraphPad Prism (GraphPad Software, Inc. USA) with comparison

of survival curves performed by the logrank Mantel-Cox test. The

appropriate Wilcoxon or Kruskall-Wallis tests were used for group

comparison of tumour volumes and BMMC migration.

Supporting Information

Methods S1 Supplemental Methods

Found at: doi:10.1371/journal.pone.0007258.s001 (0.06 MB

DOC)

Table S1 Effect of imatinib on selected recombinant protein

kinases.

Found at: doi:10.1371/journal.pone.0007258.s002 (0.04 MB

DOC)
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